cexpf, cexp, cexpl
From cppreference.com
 
 
 
 
 
  C 
 Concurrency support (C11)
 Complex number arithmetic 
  
 Types and the imaginary constant
 Manipulation
 Power and exponential functions
 Trigonometric functions
 Hyperbolic functions
Defined in header 
 
 
<complex.h> 
 Defined in header 
 
 
<tgmath.h> 
 #define exp( z )
 (4) 
 (since C99) 
1-3) Computes the complex base-e exponential of 
z.4) Type-generic macro: If 
z has type long double complex , cexpl is called. if z has type double complex , cexp is called, if z has type float complex , cexpf is called. If z is real or integer, then the macro invokes the corresponding real function (expf, exp , expl). If z is imaginary, the corresponding complex argument version is called.Contents
[edit] Parameters
 z
 -
 complex argument
[edit] Return value
If no errors occur, e raised to the power of z, \(\small e^z\)ez
 is returned.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- cexp(conj (z)) == conj (cexp(z))
-  If zis±0+0i, the result is1+0i
-  If zisx+∞i(for any finite x), the result isNaN+NaNiand FE_INVALID is raised.
-  If zisx+NaNi(for any finite x), the result isNaN+NaNiand FE_INVALID may be raised.
-  If zis+∞+0i, the result is+∞+0i
-  If zis-∞+yi(for any finite y), the result is+0cis(y)
-  If zis+∞+yi(for any finite nonzero y), the result is+∞cis(y)
-  If zis-∞+∞i, the result is±0±0i(signs are unspecified)
-  If zis+∞+∞i, the result is±∞+NaNiand FE_INVALID is raised (the sign of the real part is unspecified)
-  If zis-∞+NaNi, the result is±0±0i(signs are unspecified)
-  If zis+∞+NaNi, the result is±∞+NaNi(the sign of the real part is unspecified)
-  If zisNaN+0i, the result isNaN+0i
-  If zisNaN+yi(for any nonzero y), the result isNaN+NaNiand FE_INVALID may be raised
-  If zisNaN+NaNi, the result isNaN+NaNi
where \(\small{\rm cis}(y)\)cis(y) is \(\small \cos(y)+{\rm i}\sin(y)\)cos(y) + i sin(y)
[edit] Notes
The complex exponential function \(\small e^z\)ez
 for \(\small z = x + {\rm i}y\)z = x+iy equals \(\small e^x {\rm cis}(y)\)ex
 cis(y), or, \(\small e^x (\cos(y)+{\rm i}\sin(y))\)ex
 (cos(y) + i sin(y))
The exponential function is an entire function in the complex plane and has no branch cuts.
[edit] Example
Run this code
Output:
exp(i*pi) = -1.0+0.0i
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.7.1 The cexp functions (p: 194)
 
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
 
- G.6.3.1 The cexp functions (p: 543)
 
- G.7 Type-generic math <tgmath.h> (p: 545)
 
- C99 standard (ISO/IEC 9899:1999):
- 7.3.7.1 The cexp functions (p: 176)
 
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
 
- G.6.3.1 The cexp functions (p: 478)
 
- G.7 Type-generic math <tgmath.h> (p: 480)
 
[edit] See also
C++ documentation  for exp