module CCKTree:sig..end
CCKList, it
is a structural type.type'asequence =('a -> unit) -> unit
type'agen =unit -> 'a option
type'aklist =unit -> [ `Cons of 'a * 'a klist | `Nil ]
type'aprinter =Format.formatter -> 'a -> unit
type'at =unit -> [ `Nil | `Node of 'a * 'a t list ]
val empty : 'a t
val is_empty : 'a t -> bool
val singleton : 'a -> 'a t val node : 'a -> 'a t list -> 'a t val node1 : 'a -> 'a t -> 'a t val node2 : 'a -> 'a t -> 'a t -> 'a t val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'aval iter : ('a -> unit) -> 'a t -> unit
val size : 'a t -> intval height : 'a t -> intval map : ('a -> 'b) -> 'a t -> 'b t
val (>|=) : 'a t -> ('a -> 'b) -> 'b t
val cut_depth : int -> 'a t -> 'a t class type['a]pset =object..end
val set_of_cmp : ?cmp:('a -> 'a -> int) -> unit -> 'a pset val dfs : ?pset:'a pset ->
'a t -> [ `Enter of 'a | `Exit of 'a ] klist val bfs : ?pset:'a pset -> 'a t -> 'a klist val force : 'a t -> ([ `Nil | `Node of 'a * 'b list ] as 'b)force t evaluates t completely and returns a regular tree
structureval find : ?pset:'a pset -> ('a -> 'b option) -> 'a t -> 'b optionSome _Example (tree of calls for naive Fibonacci function):
let mk_fib n =
let rec fib' l r i =
if i=n then r else fib' r (l+r) (i+1)
in fib' 1 1 1;;
let rec fib n = match n with
| 0 | 1 -> CCKTree.singleton (`Cst n)
| _ -> CCKTree.node2 (`Plus (mk_fib n)) (fib (n-1)) (fib (n-2));;
let pp_node fmt = function
| `Cst n -> Format.fprintf fmt "%d" n
| `Plus n -> Format.fprintf fmt "%d" n;;
Format.printf "%a@." (CCKTree.print pp_node) (fib 8);;
val pp : 'a printer -> 'a t printer module Dot:sig..end