Collisions: FSM-like approach for a linear solution

Medium LeetCode problem: Count Collisions on a Road - LeetCode

One approach that worked for me was to treat this problem as a Finite-State-Machine (FSM) problem. Basically the states are defined by the different vehicles (R, L and S), and the state transitions take place depending on the previous rightmost car. That leads to a linear solution without the use of extra space. Code is down below, cheers, ACC.

There are n cars on an infinitely long road. The cars are numbered from 0 to n - 1 from left to right and each car is present at a unique point.

You are given a 0-indexed string directions of length n. directions[i] can be either 'L', 'R', or 'S' denoting whether the ith car is moving towards the left, towards the right, or staying at its current point respectively. Each moving car has the same speed.

The number of collisions can be calculated as follows:

  • When two cars moving in opposite directions collide with each other, the number of collisions increases by 2.
  • When a moving car collides with a stationary car, the number of collisions increases by 1.

After a collision, the cars involved can no longer move and will stay at the point where they collided. Other than that, cars cannot change their state or direction of motion.

Return the total number of collisions that will happen on the road.

Example 1:

Input: directions = "RLRSLL"
Output: 5
Explanation:
The collisions that will happen on the road are:
- Cars 0 and 1 will collide with each other. Since they are moving in opposite directions, the number of collisions becomes 0 + 2 = 2.
- Cars 2 and 3 will collide with each other. Since car 3 is stationary, the number of collisions becomes 2 + 1 = 3.
- Cars 3 and 4 will collide with each other. Since car 3 is stationary, the number of collisions becomes 3 + 1 = 4.
- Cars 4 and 5 will collide with each other. After car 4 collides with car 3, it will stay at the point of collision and get hit by car 5. The number of collisions becomes 4 + 1 = 5.
Thus, the total number of collisions that will happen on the road is 5. 

Example 2:

Input: directions = "LLRR"
Output: 0
Explanation:
No cars will collide with each other. Thus, the total number of collisions that will happen on the road is 0.

Constraints:

  • 1 <= directions.length <= 105
  • directions[i] is either 'L', 'R', or 'S'.


public int CountCollisions(string directions)
{
 int countRight = 0;
 char rightMostCar = ' ';
 int countCollisions = 0;
 for (int i = 0; i < directions.Length; i++) { if (directions[i] == 'R') { countRight++; rightMostCar = 'R'; } else { if (directions[i] == 'S') { countCollisions += countRight; rightMostCar = 'S'; } else //directions[i] == 'L' { if (rightMostCar == 'S') { countCollisions++; } else if (rightMostCar == 'R') { countCollisions = (countCollisions + 2) + (countRight - 1); rightMostCar = 'S'; } } countRight = 0; } } return countCollisions; } 

Comments

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...