Two problems: locking a binary tree and regular expressions

This post contains the solutions to two problems, from Daily Coding Problem:

1)
This is your coding interview problem for today.
This problem was asked by Google.
Implement locking in a binary tree. A binary tree node can be locked or unlocked only if all of its descendants or ancestors are not locked.
Design a binary tree node class with the following methods:
  • is_locked, which returns whether the node is locked
  • lock, which attempts to lock the node. If it cannot be locked, then it should return false. Otherwise, it should lock it and return true.
  • unlock, which unlocks the node. If it cannot be unlocked, then it should return false. Otherwise, it should unlock it and return true.
You may augment the node to add parent pointers or any other property you would like. You may assume the class is used in a single-threaded program, so there is no need for actual locks or mutexes. Each method should run in O(h), where h is the height of the tree.

2)
This is your coding interview problem for today.
This problem was asked by Facebook.
Implement regular expression matching with the following special characters:
  • . (period) which matches any single character
  • * (asterisk) which matches zero or more of the preceding element
That is, implement a function that takes in a string and a valid regular expression and returns whether or not the string matches the regular expression.
For example, given the regular expression "ra." and the string "ray", your function should return true. The same regular expression on the string "raymond" should return false.
Given the regular expression ".*at" and the string "chat", your function should return true. The same regular expression on the string "chats" should return false.

SOLUTIONS

For (1), the secret is to do the following:
- Each node in the tree will have a pointer to its parent
- In addition to the isLocked boolean, keep track of how many times a subnode has been locked, and unlocked, with a counter
- Only lock, or unlock, if the counter is zero, and update the counter for the ancestors (O(h))

For (2),
- Build the base cases trivially
- Keep in mind that sometimes you'll have a regex that is not empty but can match an empty string, such as "a*.***". Handle that too
- The induction is relatively straightforward, just the "*" requires a little more code

All code is here:
1) https://github.com/marcelodebarros/dailycodingproblem/blob/master/DailyCodingProblem10082018.cs
2) https://github.com/marcelodebarros/dailycodingproblem/blob/master/DailyCodingProblem10092018.cs

Thanks, Marcelo

Comments

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...