Deleting leaves of a certain kind

Here is a problem: you're given a binary tree, say something like this:


Now what we want to do is delete all the leaves from this tree whose value is equal to a certain target value. For this example's sake, the target value will be 5. That seems pretty straightforward: traverse down the tree, and the moment that you find a leave whose value equals to 5, chop it off:


But hang on, what if the problem requires you to ensure that the remaining tree, after deleting any leaf whose value was 5, does not have any resulting leaf with value equals to five? Suppose for example that instead of "4", that node had the value "5":


It would then trigger a cascading event where not only the "5" leaves would be deleted, but also their parent would be deleted too. This is because after deleting the "5"s, you'd end up with a new tree with new leaves whose values are also 5 :). Those should be deleted too. How to do that?


A simple approach would be a DFS (Depth-First Search) but using Post-Order (left, right, current) traversal. Basically ensure to process the left, process the right, and if the current node, for whatever reason, suddenly becomes (became?) a leaf whose value equals to the target, take care of it too. Short code is down below. Cheers, Marcelo.

static void DeleteLeaves(Tree parentNode,
Tree currentNode,
bool isLeft,
int target)
{
if (currentNode == null) return;

DeleteLeaves(currentNode, currentNode.left, true, target);
DeleteLeaves(currentNode, currentNode.right, false, target);

if (currentNode.left == null && currentNode.right == null && currentNode.value == target)
if (parentNode == null) currentNode = null;
else if (isLeft) parentNode.left = null;
else parentNode.right = null;
}

Comments

  1. Very slick, Marcelo! It's a classical problem for post-order traversal.

    Reply Delete
  2. Indeed. Funny story is when I first saw this problem for whatever reason my brain got stuck into pre-order and couldn’t get out of that state. Later on the post order came. Sometimes we just need a thinking break to clear things up!

    Reply Delete
    Replies
    1. Definitely! After solving a few problems using DP, I always need a long-ish break to stop trying to solve even trivial problems using it :) Good thing there is always plenty of work to take our minds off :) Keep these awesome problems coming, Marcelo!

      Delete

Post a Comment

[フレーム]

Popular posts from this blog

Quasi FSM (Finite State Machine) problem + Vibe

Not really an FSM problem since the state isn't changing, it is just defined by the current input. Simply following the instructions should do it. Using VSCode IDE you can also engage the help of Cline or Copilot for a combo of coding and vibe coding, see below screenshot. Cheers, ACC. Process String with Special Operations I - LeetCode You are given a string  s  consisting of lowercase English letters and the special characters:  * ,  # , and  % . Build a new string  result  by processing  s  according to the following rules from left to right: If the letter is a  lowercase  English letter append it to  result . A  '*'   removes  the last character from  result , if it exists. A  '#'   duplicates  the current  result  and  appends  it to itself. A  '%'   reverses  the current  result . Return the final string  result  after processing all char...

Shortest Bridge – A BFS Story (with a Twist)

Here's another one from the Google 30 Days challenge on LeetCode — 934. Shortest Bridge . The goal? Given a 2D binary grid where two islands (groups of 1s) are separated by water (0s), flip the fewest number of 0s to 1s to connect them. Easy to describe. Sneaky to implement well. 🧭 My Approach My solution follows a two-phase Breadth-First Search (BFS) strategy: Find and mark one island : I start by scanning the grid until I find the first 1 , then use BFS to mark all connected land cells as 2 . I store their positions for later use. Bridge-building BFS : For each cell in the marked island, I run a BFS looking for the second island. Each BFS stops as soon as it hits a cell with value 1 . The minimum distance across all these searches gives the shortest bridge. πŸ” Code Snippet Here's the core logic simplified: public int ShortestBridge(int[][] grid) { // 1. Mark one island as '2' and gather its coordinates List<int> island = FindAndMark...

Classic Dynamic Programming IX

A bit of vibe code together with OpenAI O3. I asked O3 to just generate the sieve due to laziness. Sieve is used to calculate the first M primes (when I was using Miller-Rabin, was giving me TLE). The DP follows from that in a straightforward way: calculate the numbers from i..n-1, then n follows by calculating the min over all M primes. Notice that I made use of Goldbach's Conjecture as a way to optimize the code too. Goldbach's Conjecture estates that any even number greater than 2 is the sum of 2 primes. The conjecture is applied in the highlighted line. Cheers, ACC. PS: the prompt for the sieve was the following, again using Open AI O3 Advanced Reasoning: " give me a sieve to find the first M prime numbers in C#. The code should produce a List<int> with the first M primes " Minimum Number of Primes to Sum to Target - LeetCode You are given two integers  n  and  m . You have to select a multiset of  prime numbers  from the  first   m  pri...