Module: tfma

View source on GitHub

Init module for TensorFlow Model Analysis.

Modules

addons module: Init module for TensorFlow Model Analysis addons.

constants module: Constants used in TensorFlow Model Analysis.

contrib module

evaluators module: Init module for TensorFlow Model Analysis evaluators.

experimental module

export module: Library for exporting the EvalSavedModel.

exporter module: Exporter class represents different flavors of model export.

extractors module: Init module for TensorFlow Model Analysis extractors.

metrics module: Init module for TensorFlow Model Analysis metrics.

model_agnostic_eval module: Init module for TensorFlow Model Analysis model_agnostic_eval.

post_export_metrics module: Library containing helpers for adding post export metrics for evaluation.

sdk module: SDK for TensorFlow Model Analysis.

types module: Types.

utils module: Init module for TensorFlow Model Analysis utils.

validators module: Init module for TensorFlow Model Analysis validators.

version module: Contains the version string for this release of TFMA.

view module: Initializes TFMA's view rendering api.

writers module: Init module for TensorFlow Model Analysis writers.

Classes

class AggregationOptions: A ProtocolMessage

class AttributionsForSlice: A ProtocolMessage

class BinarizationOptions: A ProtocolMessage

class ConfidenceIntervalOptions: A ProtocolMessage

class CrossSliceMetricThreshold: A ProtocolMessage

class CrossSliceMetricThresholds: A ProtocolMessage

class CrossSlicingSpec: A ProtocolMessage

class EvalConfig: A ProtocolMessage

class EvalResult: The result of a single model analysis run.

class EvalSharedModel: Shared model used during extraction and evaluation.

class ExampleWeightOptions: A ProtocolMessage

class FeaturesPredictionsLabels: FeaturesPredictionsLabels(input_ref, features, predictions, labels)

class GenericChangeThreshold: A ProtocolMessage

class GenericValueThreshold: A ProtocolMessage

class MaterializedColumn: MaterializedColumn(name, value)

class MetricConfig: A ProtocolMessage

class MetricThreshold: A ProtocolMessage

class MetricsForSlice: A ProtocolMessage

class MetricsSpec: A ProtocolMessage

class ModelLoader: Model loader is responsible for loading shared model types.

class ModelSpec: A ProtocolMessage

class Options: A ProtocolMessage

class PaddingOptions: A ProtocolMessage

class PerSliceMetricThreshold: A ProtocolMessage

class PerSliceMetricThresholds: A ProtocolMessage

class PlotsForSlice: A ProtocolMessage

class RaggedTensorValue: RaggedTensorValue encapsulates a batch of ragged tensor values.

class RepeatedInt32Value: A ProtocolMessage

class RepeatedStringValue: A ProtocolMessage

class SlicingSpec: A ProtocolMessage

class SparseTensorValue: SparseTensorValue encapsulates a batch of sparse tensor values.

class ValidationResult: A ProtocolMessage

class VarLenTensorValue: VarLenTensorValue encapsulates a batch of varlen dense tensor values.

Functions

BatchedInputsToExtracts(...): Converts Arrow RecordBatch inputs to Extracts.

ExtractAndEvaluate(...): Performs Extractions and Evaluations in provided order.

ExtractEvaluateAndWriteResults(...): PTransform for performing extraction, evaluation, and writing results.

InputsToExtracts(...): Converts serialized inputs (e.g. examples) to Extracts if not already.

Validate(...): Performs validation of alternative evaluations.

WriteResults(...): Writes Evaluation or Validation results using given writers.

analyze_raw_data(...): Runs TensorFlow model analysis on a pandas.DataFrame.

default_eval_shared_model(...): Returns default EvalSharedModel.

default_evaluators(...): Returns the default evaluators for use in ExtractAndEvaluate.

default_extractors(...): Returns the default extractors for use in ExtractAndEvaluate.

default_writers(...): Returns the default writers for use in WriteResults.

is_batched_input(...): Returns true if batched input should be used.

is_legacy_estimator(...): Returns true if there is a legacy estimator.

load_attributions(...): Read and deserialize the AttributionsForSlice records.

load_eval_result(...): Loads EvalResult object for use with the visualization functions.

load_eval_results(...): Loads results for multiple models or multiple data sets.

load_metrics(...): Read and deserialize the MetricsForSlice records.

load_plots(...): Read and deserialize the PlotsForSlice records.

load_validation_result(...): Read and deserialize the ValidationResult.

make_eval_results(...): Run model analysis for a single model on multiple data sets.

multiple_data_analysis(...): Run model analysis for a single model on multiple data sets.

multiple_model_analysis(...): Run model analysis for multiple models on the same data set.

run_model_analysis(...): Runs TensorFlow model analysis.

Type Aliases

AddMetricsCallbackType

Extracts

MaybeMultipleEvalSharedModels

TensorType

TensorTypeMaybeDict

TensorValue

Other Members

ANALYSIS_KEY 'analysis'
ARROW_INPUT_COLUMN '__raw_record__'
ARROW_RECORD_BATCH_KEY 'arrow_record_batch'
ATTRIBUTIONS_KEY 'attributions'
BASELINE_KEY 'baseline'
BASELINE_SCORE_KEY 'baseline_score'
CANDIDATE_KEY 'candidate'
DATA_CENTRIC_MODE 'data_centric_mode'
EXAMPLE_SCORE_KEY 'example_score'
EXAMPLE_WEIGHTS_KEY 'example_weights'
FEATURES_KEY 'features'
FEATURES_PREDICTIONS_LABELS_KEY '_fpl'
INPUT_KEY 'input'
LABELS_KEY 'labels'
METRICS_KEY 'metrics'
MODEL_CENTRIC_MODE 'model_centric_mode'
MetricDirection Instance of google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper
PLOTS_KEY 'plots'
PREDICTIONS_KEY 'predictions'
SLICE_KEY_TYPES_KEY '_slice_key_types'
TFMA_EVAL 'tfma_eval'
TF_ESTIMATOR 'tf_estimator'
TF_GENERIC 'tf_generic'
TF_JS 'tf_js'
TF_KERAS 'tf_keras'
TF_LITE 'tf_lite'
VALIDATIONS_KEY 'validations'
VERSION_STRING '0.46.0'

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024年04月26日 UTC.