Migrate TensorBoard: TensorFlow's visualization toolkit
Stay organized with collections
Save and categorize content based on your preferences.
TensorBoard is a built-in tool for providing measurements and visualizations in TensorFlow. Common machine learning experiment metrics, such as accuracy and loss, can be tracked and displayed in TensorBoard. TensorBoard is compatible with TensorFlow 1 and 2 code.
In TensorFlow 1, tf.estimator.Estimator saves summaries for TensorBoard by default. In comparison, in TensorFlow 2, summaries can be saved using a tf.keras.callbacks.TensorBoard callback.
This guide demonstrates how to use TensorBoard, first, in TensorFlow 1 with Estimators, and then, how to carry out the equivalent process in TensorFlow 2.
Setup
importtensorflow.compat.v1astf1
importtensorflowastf
importtempfile
importnumpyasnp
importdatetime
%load_ext tensorboard
mnist=tf.keras.datasets.mnist# The MNIST dataset.
(x_train,y_train),(x_test,y_test)=mnist.load_data()
x_train,x_test=x_train/255.0,x_test/255.0
TensorFlow 1: TensorBoard with tf.estimator
In this TensorFlow 1 example, you instantiate a tf.estimator.DNNClassifier, train and evaluate it on the MNIST dataset, and use TensorBoard to display the metrics:
%reload_exttensorboard
feature_columns=[tf1.feature_column.numeric_column("x",shape=[28,28])]
config=tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path=tempfile.mkdtemp()
classifier=tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256,32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.1,
model_dir=path,
config=config
)
train_input_fn=tf1.estimator.inputs.numpy_input_fn(
x={"x":x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn=tf1.estimator.inputs.numpy_input_fn(
x={"x":x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec=tf1.estimator.TrainSpec(input_fn=train_input_fn,max_steps=10)
eval_spec=tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
%tensorboard--logdir{classifier.model_dir}
TensorFlow 2: TensorBoard with a Keras callback and Model.fit
In this TensorFlow 2 example, you create and store logs with the tf.keras.callbacks.TensorBoard callback, and train the model. The callback tracks the accuracy and loss per epoch. It is passed to Model.fit in the callbacks list.
%reload_exttensorboard
defcreate_model():
returntf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28),name='layers_flatten'),
tf.keras.layers.Dense(512,activation='relu',name='layers_dense'),
tf.keras.layers.Dropout(0.2,name='layers_dropout'),
tf.keras.layers.Dense(10,activation='softmax',name='layers_dense_2')
])
model=create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir=tempfile.mkdtemp()
tensorboard_callback=tf.keras.callbacks.TensorBoard(
log_dir=log_dir,
histogram_freq=1)#Enablehistogramcomputationwitheachepoch.
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test,y_test),
callbacks=[tensorboard_callback])
%tensorboard--logdir{tensorboard_callback.log_dir}
Next steps
- Learn more about TensorBoard in the Get started guide.
- For lower level APIs, refer to the tf.summary migration to TensorFlow 2 guide.