TFDS now supports the Croissant 🥐 format! Read the documentation to know more.

tfds.as_numpy

View source on GitHub

Converts a tf.data.Dataset to an iterable of NumPy arrays.

tfds.as_numpy(
 dataset: Tree[TensorflowElem]
) -> Tree[NumpyElem]

Used in the notebooks

Used in the tutorials

as_numpy converts a possibly nested structure of tf.data.Datasets and tf.Tensors to iterables of NumPy arrays and NumPy arrays, respectively.

Note that because TensorFlow has support for ragged tensors and NumPy has no equivalent representation, tf.RaggedTensors are left as-is for the user to deal with them (e.g. using to_list()). In TF 1 (i.e. graph mode), tf.RaggedTensors are returned as tf.ragged.RaggedTensorValues.

Example:

ds = tfds.load(name="mnist", split="train")
ds_numpy = tfds.as_numpy(ds) # Convert `tf.data.Dataset` to Python generator
for ex in ds_numpy:
 # `{'image': np.array(shape=(28, 28, 1)), 'labels': np.array(shape=())}`
 print(ex)

Args

dataset a possibly nested structure of tf.data.Datasets and/or tf.Tensors.

Returns

A structure matching dataset where tf.data.Datasets are converted to generators of NumPy arrays and tf.Tensors are converted to NumPy arrays.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024年04月26日 UTC.