Agents is a library for reinforcement learning in TensorFlow.
importtensorflowastf fromtf_agents.networksimport q_network fromtf_agents.agents.dqnimport dqn_agent q_net = q_network.QNetwork( train_env.observation_spec(), train_env.action_spec(), fc_layer_params=(100,)) agent = dqn_agent.DqnAgent( train_env.time_step_spec(), train_env.action_spec(), q_network=q_net, optimizer=optimizer, td_errors_loss_fn=common.element_wise_squared_loss, train_step_counter=tf.Variable(0)) agent.initialize()
TF-Agents makes designing, implementing and testing new RL algorithms easier, by providing well tested modular components that can be modified and extended. It enables fast code iteration, with good test integration and benchmarking.