Warning: This project is deprecated. TensorFlow Addons has stopped development, The project will only be providing minimal maintenance releases until May 2024. See the full announcement here or on github.

tfa.activations.softshrink

View source on GitHub

Soft shrink function.

tfa.activations.softshrink(
 x: tfa.types.TensorLike ,
 lower: tfa.types.Number = -0.5,
 upper: tfa.types.Number = 0.5
) -> tf.Tensor

Computes soft shrink function:

\[ \mathrm{softshrink}(x) = \begin{cases} x - \mathrm{lower} & \text{if } x < \mathrm{lower} \\ x - \mathrm{upper} & \text{if } x > \mathrm{upper} \\ 0 & \text{otherwise} \end{cases}. \]

Usage:

x = tf.constant([-1.0, 0.0, 1.0])
tfa.activations.softshrink(x)
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([-0.5, 0. , 0.5], dtype=float32)>

Args

x A Tensor. Must be one of the following types: bfloat16, float16, float32, float64.
lower float, lower bound for setting values to zeros.
upper float, upper bound for setting values to zeros.

Returns

A Tensor. Has the same type as x.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2023年05月25日 UTC.