Cephes Mathematical Library

Source code archives


Documentation for single precision library.
Documentation for double precision library.
Documentation for 80-bit long double library.
Documentation for 128-bit long double library.
Documentation for extended precision library.

Single Precision Special Functions

Select function name for additional information. For other precisions, see the archives and descriptions listed above.
  • acoshf, Inverse hyperbolic cosine
  • airyf, Airy function
  • asinf, Inverse circular sine
  • acosf, Inverse circular cosine
  • asinhf, Inverse hyperbolic sine
  • atanf, Inverse circular tangent
  • atan2f, Quadrant correct inverse circular tangent
  • atanhf, Inverse hyperbolic tangent
  • bdtrf, Binomial distribution
  • bdtrcf, Complemented binomial distribution
  • bdtrif, Inverse binomial distribution
  • betaf, Beta function
  • cbrtf, Cube root
  • chbevlf, Evaluate Chebyshev series
  • chdtrf, Chi-square distribution
  • chdtrcf, Complemented Chi-square distribution
  • chdtrif, Inverse of complemented Chi-square distribution
  • clogf, Complex natural logarithm
  • cexpf, Complex exponential
  • csinf, Complex circular sine
  • ccosf, Complex circular cosine
  • ctanf, Complex circular tangent
  • ccotf, Complex circular cotangent
  • casinf, Complex circular arc sine
  • cacosf, Complex circular arc cosine
  • catanf, Complex circular arc tangent
  • cmplxf, Complex arithmetic
  • coshf, Hyperbolic cosine
  • dawsnf, Dawson's Integral
  • ellief, Incomplete elliptic integral of the second kind
  • ellikf, Incomplete elliptic integral of the first kind
  • ellpef, Complete elliptic integral of the second kind
  • ellpjf, Jacobian Elliptic Functions
  • ellpkf, Complete elliptic integral of the first kind
  • exp10f, Base 10 exponential function
  • exp2f, Base 2 exponential function
  • expf, Exponential function
  • expnf, Exponential integral En
  • expx2f, Exponential of squared argument
  • facf, Factorial function
  • fdtrf, F distribution
  • fdtrcf, Complemented F distribution
  • fdtrif, Inverse of complemented F distribution
  • ceilf, Round up to integer
  • floorf, Round down to integer
  • frexpf, Extract exponent and significand
  • ldexpf, Apply exponent
  • signbitf, Extract sign
  • isnanf, Test for not a number
  • isfinitef, Test for infinity
  • fresnlf, Fresnel integral
  • gammaf, Gamma function
  • lgamf, Natural logarithm of gamma function
  • gdtrf, Gamma distribution function
  • gdtrcf, Complemented gamma distribution function
  • hyp2f1f, Gauss hypergeometric function
  • hypergf, Confluent hypergeometric function
  • i0f, Modified Bessel function of order zero
  • i0ef, Modified Bessel function of order zero, exponentially scaled
  • i1f, Modified Bessel function of order one
  • i1ef, Modified Bessel function of order one, exponentially scaled
  • igamf, Incomplete gamma integral
  • igamcf, Complemented incomplete gamma integral
  • igamif, Inverse of complemented incomplete gamma integral
  • incbetf, Incomplete beta integral
  • incbif, Inverse of incomplete beta integral
  • ivf, Modified Bessel function of noniteger order
  • j0f, Bessel function of order zero
  • y0f, Bessel function of the second kind, order zero
  • j1f, Bessel function of order one
  • y1f, Bessel function of the second kind, order one
  • jnf, Bessel function of integer order
  • jvf, Bessel function of noninteger order
  • k0f, Modified Bessel function, third kind, order zero
  • k0ef, Modified Bessel function, third kind, order zero, exponentially scaled
  • k1f, Modified Bessel function, third kind, order one
  • k1ef, Modified Bessel function, third kind, order one, exponentially scaled
  • knf, Modified Bessel function, third kind, integer order
  • log10f, Common logarithm
  • log2f, Base 2 logarithm
  • logf, Natural logarithm
  • mtherrf, Library common error handling routine
  • nbdtrf, Negative binomial distribution
  • nbdtrcf, Complemented negative binomial distribution
  • ndtrf, Normal distribution function
  • erff, Error function
  • erfcf, Complementary error function
  • ndtrif, Inverse of normal distribution function
  • pdtrf, Poisson distribution
  • pdtrcf, Compemented Poisson distribution
  • pdtrif, Inverse Poisson distribution
  • polevlf, Evaluate polynomial
  • p1evlf, Evaluate polynomial
  • polynf, Arithmetic on polynomials
  • powf, Power function
  • powif, Real raised to integer power
  • psif, Psi (digamma) function
  • rgamma, Reciprocal gamma function
  • shichif, Hyperbolic sine and cosine integrals
  • sicif, Sine and cosine integrals
  • sindgf, Circular sine of angle in degrees
  • cosdgf, Circular cosine of angle in degrees
  • sinf, Circular sine
  • cosf, Circular cosine
  • sinhf, Hyperbolic sine
  • spencef, Dilogarithm
  • sqrtf, Square root
  • stdtrf, Student's t distribution
  • struvef, Struve function
  • tandgf, Circular tangent of angle in degrees
  • cotdgf, Circular cotangent of angle in degrees
  • tanf, Circular tangent
  • cotf, Circular cotangent
  • tanhf, Hyperbolic tangent
  • ynf, Bessel function of the second kind, integer order
  • zetacf, Riemann zeta function
  • zetaf, Two-argument zeta function
  • /*							acoshf.c
     *
     *	Inverse hyperbolic cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, acoshf();
     *
     * y = acoshf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic cosine of argument.
     *
     * If 1 <= x < 1.5, a polynomial approximation
     *
     *	sqrt(z) * P(z)
     *
     * where z = x-1, is used. Otherwise,
     *
     * acosh(x) = log( x + sqrt( (x-1)(x+1) ).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 1,3 100000 1.8e-7 3.9e-8
     * IEEE 1,2000 100000 3.0e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * acoshf domain |x| < 1 0.0
     *
     */
    
    /*							airy.c
     *
     *	Airy function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, ai, aip, bi, bip;
     * int airyf();
     *
     * airyf( x, &ai, &aip, &bi, &bip );
     *
     *
     *
     * DESCRIPTION:
     *
     * Solution of the differential equation
     *
     *	y"(x) = xy.
     *
     * The function returns the two independent solutions Ai, Bi
     * and their first derivatives Ai'(x), Bi'(x).
     *
     * Evaluation is by power series summation for small x,
     * by rational minimax approximations for large x.
     *
     *
     *
     * ACCURACY:
     * Error criterion is absolute when function <= 1, relative
     * when function > 1, except * denotes relative error criterion.
     * For large negative x, the absolute error increases as x^1.5.
     * For large positive x, the relative error increases as x^1.5.
     *
     * Arithmetic domain function # trials peak rms
     * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7
     * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7*
     * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7
     * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7*
     * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7
     * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7
     *
     */
    
    /*							asinf.c
     *
     *	Inverse circular sine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, asinf();
     *
     * y = asinf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
     *
     * A polynomial of the form x + x**3 P(x**2)
     * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
     * transformed by the identity
     *
     * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -1, 1 100000 2.5e-7 5.0e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * asinf domain |x| > 1 0.0
     *
     */
    
    /*							acosf()
     *
     *	Inverse circular cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, acosf();
     *
     * y = acosf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose cosine
     * is x.
     *
     * Analytically, acos(x) = pi/2 - asin(x). However if |x| is
     * near 1, there is cancellation error in subtracting asin(x)
     * from pi/2. Hence if x < -0.5,
     *
     * acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
     *
     * or if x > +0.5,
     *
     * acos(x) =	 2.0 * asin( sqrt((1-x)/2) ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -1, 1 100000 1.4e-7 4.2e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * acosf domain |x| > 1 0.0
     */
    
    /*							asinhf.c
     *
     *	Inverse hyperbolic sine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, asinhf();
     *
     * y = asinhf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic sine of argument.
     *
     * If |x| < 0.5, the function is approximated by a rational
     * form x + x**3 P(x)/Q(x). Otherwise,
     *
     * asinh(x) = log( x + sqrt(1 + x*x) ).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -3,3 100000 2.4e-7 4.1e-8
     *
     */
    
    /*							atanf.c
     *
     *	Inverse circular tangent
     * (arctangent)
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, atanf();
     *
     * y = atanf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose tangent
     * is x.
     *
     * Range reduction is from four intervals into the interval
     * from zero to tan( pi/8 ). A polynomial approximates
     * the function in this basic interval.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10, 10 100000 1.9e-7 4.1e-8
     *
     */
    
    /*							atan2f()
     *
     *	Quadrant correct inverse circular tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, z, atan2f();
     *
     * z = atan2f( y, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle whose tangent is y/x.
     * Define compile time symbol ANSIC = 1 for ANSI standard,
     * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
     * 0 to 2PI, args (x,y).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10, 10 100000 1.9e-7 4.1e-8
     * See atan.c.
     *
     */
    
    /*							atanhf.c
     *
     *	Inverse hyperbolic tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, atanhf();
     *
     * y = atanhf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic tangent of argument in the range
     * MINLOGF to MAXLOGF.
     *
     * If |x| < 0.5, a polynomial approximation is used.
     * Otherwise,
     * atanh(x) = 0.5 * log( (1+x)/(1-x) ).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -1,1 100000 1.4e-7 3.1e-8
     *
     */
    
    /*							bdtrf.c
     *
     *	Binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * float p, y, bdtrf();
     *
     * y = bdtrf( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms 0 through k of the Binomial
     * probability density:
     *
     * k
     * -- ( n ) j n-j
     * > ( ) p (1-p)
     * -- ( j )
     * j=0
     *
     * The terms are not summed directly; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error (p varies from 0 to 1):
     * arithmetic domain # trials peak rms
     * IEEE 0,100 2000 6.9e-5 1.1e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * bdtrf domain k < 0 0.0
     * n < k
     * x < 0, x > 1
     *
     */
    
    /*							bdtrcf()
     *
     *	Complemented binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * float p, y, bdtrcf();
     *
     * y = bdtrcf( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 through n of the Binomial
     * probability density:
     *
     * n
     * -- ( n ) j n-j
     * > ( ) p (1-p)
     * -- ( j )
     * j=k+1
     *
     * The terms are not summed directly; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error (p varies from 0 to 1):
     * arithmetic domain # trials peak rms
     * IEEE 0,100 2000 6.0e-5 1.2e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * bdtrcf domain x<0, x>1, n<k 0.0
     */
    
    /*							bdtrif()
     *
     *	Inverse binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * float p, y, bdtrif();
     *
     * p = bdtrf( k, n, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the event probability p such that the sum of the
     * terms 0 through k of the Binomial probability density
     * is equal to the given cumulative probability y.
     *
     * This is accomplished using the inverse beta integral
     * function and the relation
     *
     * 1 - p = incbi( n-k, k+1, y ).
     *
     *
     *
     *
     * ACCURACY:
     *
     * Relative error (p varies from 0 to 1):
     * arithmetic domain # trials peak rms
     * IEEE 0,100 2000 3.5e-5 3.3e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * bdtrif domain k < 0, n <= k 0.0
     * x < 0, x > 1
     *
     */
    
    /*							betaf.c
     *
     *	Beta function
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, b, y, betaf();
     *
     * y = betaf( a, b );
     *
     *
     *
     * DESCRIPTION:
     *
     * - -
     * | (a) | (b)
     * beta( a, b ) = -----------.
     * -
     * | (a+b)
     *
     * For large arguments the logarithm of the function is
     * evaluated using lgam(), then exponentiated.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 10000 4.0e-5 6.0e-6
     * IEEE -20,0 10000 4.9e-3 5.4e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * betaf overflow log(beta) > MAXLOG 0.0
     * a or b < 0 integer 0.0
     *
     */
    
    /*							cbrtf.c
     *
     *	Cube root
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, cbrtf();
     *
     * y = cbrtf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the cube root of the argument, which may be negative.
     *
     * Range reduction involves determining the power of 2 of
     * the argument. A polynomial of degree 2 applied to the
     * mantissa, and multiplication by the cube root of 1, 2, or 4
     * approximates the root to within about 0.1%. Then Newton's
     * iteration is used to converge to an accurate result.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,1e38 100000 7.6e-8 2.7e-8
     *
     */
    
    /*							chbevlf.c
     *
     *	Evaluate Chebyshev series
     *
     *
     *
     * SYNOPSIS:
     *
     * int N;
     * float x, y, coef[N], chebevlf();
     *
     * y = chbevlf( x, coef, N );
     *
     *
     *
     * DESCRIPTION:
     *
     * Evaluates the series
     *
     * N-1
     * - '
     * y = > coef[i] T (x/2)
     * - i
     * i=0
     *
     * of Chebyshev polynomials Ti at argument x/2.
     *
     * Coefficients are stored in reverse order, i.e. the zero
     * order term is last in the array. Note N is the number of
     * coefficients, not the order.
     *
     * If coefficients are for the interval a to b, x must
     * have been transformed to x -> 2(2x - b - a)/(b-a) before
     * entering the routine. This maps x from (a, b) to (-1, 1),
     * over which the Chebyshev polynomials are defined.
     *
     * If the coefficients are for the inverted interval, in
     * which (a, b) is mapped to (1/b, 1/a), the transformation
     * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
     * this becomes x -> 4a/x - 1.
     *
     *
     *
     * SPEED:
     *
     * Taking advantage of the recurrence properties of the
     * Chebyshev polynomials, the routine requires one more
     * addition per loop than evaluating a nested polynomial of
     * the same degree.
     *
     */
    
    /*							chdtrf.c
     *
     *	Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * float df, x, y, chdtrf();
     *
     * y = chdtrf( df, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the left hand tail (from 0 to x)
     * of the Chi square probability density function with
     * v degrees of freedom.
     *
     *
     * inf.
     * -
     * 1 | | v/2-1 -t/2
     * P( x | v ) = ----------- | t e dt
     * v/2 - | |
     * 2 | (v/2) -
     * x
     *
     * where x is the Chi-square variable.
     *
     * The incomplete gamma integral is used, according to the
     * formula
     *
     *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
     *
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 3.2e-5 5.0e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * chdtrf domain x < 0 or v < 1 0.0
     */
    
    /*							chdtrcf()
     *
     *	Complemented Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * float v, x, y, chdtrcf();
     *
     * y = chdtrcf( v, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the right hand tail (from x to
     * infinity) of the Chi square probability density function
     * with v degrees of freedom:
     *
     *
     * inf.
     * -
     * 1 | | v/2-1 -t/2
     * P( x | v ) = ----------- | t e dt
     * v/2 - | |
     * 2 | (v/2) -
     * x
     *
     * where x is the Chi-square variable.
     *
     * The incomplete gamma integral is used, according to the
     * formula
     *
     *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
     *
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 2.7e-5 3.2e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * chdtrc domain x < 0 or v < 1 0.0
     */
    
    /*							chdtrif()
     *
     *	Inverse of complemented Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * float df, x, y, chdtrif();
     *
     * x = chdtrif( df, y );
     *
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the Chi-square argument x such that the integral
     * from x to infinity of the Chi-square density is equal
     * to the given cumulative probability y.
     *
     * This is accomplished using the inverse gamma integral
     * function and the relation
     *
     * x/2 = igami( df/2, y );
     *
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 10000 2.2e-5 8.5e-7
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * chdtri domain y < 0 or y > 1 0.0
     * v < 1
     *
     */
    
    /*							clogf.c
     *
     *	Complex natural logarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * void clogf();
     * cmplxf z, w;
     *
     * clogf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns complex logarithm to the base e (2.718...) of
     * the complex argument x.
     *
     * If z = x + iy, r = sqrt( x**2 + y**2 ),
     * then
     * w = log(r) + i arctan(y/x).
     * 
     * The arctangent ranges from -PI to +PI.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 1.9e-6 6.2e-8
     *
     * Larger relative error can be observed for z near 1 +i0.
     * In IEEE arithmetic the peak absolute error is 3.1e-7.
     *
     */
    
    /*							cexpf()
     *
     *	Complex exponential function
     *
     *
     *
     * SYNOPSIS:
     *
     * void cexpf();
     * cmplxf z, w;
     *
     * cexpf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the exponential of the complex argument z
     * into the complex result w.
     *
     * If
     * z = x + iy,
     * r = exp(x),
     *
     * then
     *
     * w = r cos y + i r sin y.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 1.4e-7 4.5e-8
     *
     */
    
    /*							csinf()
     *
     *	Complex circular sine
     *
     *
     *
     * SYNOPSIS:
     *
     * void csinf();
     * cmplxf z, w;
     *
     * csinf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     * z = x + iy,
     *
     * then
     *
     * w = sin x cosh y + i cos x sinh y.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 1.9e-7 5.5e-8
     *
     */
    
    /*							ccosf()
     *
     *	Complex circular cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * void ccosf();
     * cmplxf z, w;
     *
     * ccosf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     * z = x + iy,
     *
     * then
     *
     * w = cos x cosh y - i sin x sinh y.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 1.8e-7 5.5e-8
     */
    
    /*							ctanf()
     *
     *	Complex circular tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void ctanf();
     * cmplxf z, w;
     *
     * ctanf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     * z = x + iy,
     *
     * then
     *
     * sin 2x + i sinh 2y
     * w = --------------------.
     * cos 2x + cosh 2y
     *
     * On the real axis the denominator is zero at odd multiples
     * of PI/2. The denominator is evaluated by its Taylor
     * series near these points.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 3.3e-7 5.1e-8
     */
    
    /*							ccotf()
     *
     *	Complex circular cotangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void ccotf();
     * cmplxf z, w;
     *
     * ccotf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     * z = x + iy,
     *
     * then
     *
     * sin 2x - i sinh 2y
     * w = --------------------.
     * cosh 2y - cos 2x
     *
     * On the real axis, the denominator has zeros at even
     * multiples of PI/2. Near these points it is evaluated
     * by a Taylor series.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 3.6e-7 5.7e-8
     * Also tested by ctan * ccot = 1 + i0.
     */
    
    /*							casinf()
     *
     *	Complex circular arc sine
     *
     *
     *
     * SYNOPSIS:
     *
     * void casinf();
     * cmplxf z, w;
     *
     * casinf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Inverse complex sine:
     *
     * 2
     * w = -i clog( iz + csqrt( 1 - z ) ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 1.1e-5 1.5e-6
     * Larger relative error can be observed for z near zero.
     *
     */
    
    /*							cacosf()
     *
     *	Complex circular arc cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * void cacosf();
     * cmplxf z, w;
     *
     * cacosf( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     * w = arccos z = PI/2 - arcsin z.
     *
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 9.2e-6 1.2e-6
     *
     */
    
    /*							catan()
     *
     *	Complex circular arc tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void catan();
     * cmplxf z, w;
     *
     * catan( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     * z = x + iy,
     *
     * then
     * 1 ( 2x )
     * Re w = - arctan(-----------) + k PI
     * 2 ( 2 2)
     * (1 - x - y )
     *
     * ( 2 2)
     * 1 (x + (y+1) )
     * Im w = - log(------------)
     * 4 ( 2 2)
     * (x + (y-1) )
     *
     * Where k is an arbitrary integer.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,+10 30000 2.3e-6 5.2e-8
     *
     */
    
    /*							cmplxf.c
     *
     *	Complex number arithmetic
     *
     *
     *
     * SYNOPSIS:
     *
     * typedef struct {
     * float r; real part
     * float i; imaginary part
     * }cmplxf;
     *
     * cmplxf *a, *b, *c;
     *
     * caddf( a, b, c ); c = b + a
     * csubf( a, b, c ); c = b - a
     * cmulf( a, b, c ); c = b * a
     * cdivf( a, b, c ); c = b / a
     * cnegf( c ); c = -c
     * cmovf( b, c ); c = b
     *
     *
     *
     * DESCRIPTION:
     *
     * Addition:
     * c.r = b.r + a.r
     * c.i = b.i + a.i
     *
     * Subtraction:
     * c.r = b.r - a.r
     * c.i = b.i - a.i
     *
     * Multiplication:
     * c.r = b.r * a.r - b.i * a.i
     * c.i = b.r * a.i + b.i * a.r
     *
     * Division:
     * d = a.r * a.r + a.i * a.i
     * c.r = (b.r * a.r + b.i * a.i)/d
     * c.i = (b.i * a.r - b.r * a.i)/d
     * ACCURACY:
     *
     * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
     * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
     * peak relative error 8.3e-17, rms 2.1e-17.
     *
     * Tests in the rectangle {-10,+10}:
     * Relative error:
     * arithmetic function # trials peak rms
     * IEEE cadd 30000 5.9e-8 2.6e-8
     * IEEE csub 30000 6.0e-8 2.6e-8
     * IEEE cmul 30000 1.1e-7 3.7e-8
     * IEEE cdiv 30000 2.1e-7 5.7e-8
     */
    
    /*							coshf.c
     *
     *	Hyperbolic cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, coshf();
     *
     * y = coshf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic cosine of argument in the range MINLOGF to
     * MAXLOGF.
     *
     * cosh(x) = ( exp(x) + exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-MAXLOGF 100000 1.2e-7 2.8e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * coshf overflow |x| > MAXLOGF MAXNUMF
     *
     *
     */
    
    /*							dawsnf.c
     *
     *	Dawson's Integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, dawsnf();
     *
     * y = dawsnf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     * x
     * -
     * 2 | | 2
     * dawsn(x) = exp( -x ) | exp( t ) dt
     * | |
     * -
     * 0
     *
     * Three different rational approximations are employed, for
     * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,10 50000 4.4e-7 6.3e-8
     *
     *
     */
    
    /*							ellief.c
     *
     *	Incomplete elliptic integral of the second kind
     *
     *
     *
     * SYNOPSIS:
     *
     * float phi, m, y, ellief();
     *
     * y = ellief( phi, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     * phi
     * -
     * | |
     * | 2
     * E(phi\m) = | sqrt( 1 - m sin t ) dt
     * |
     * | | 
     * -
     * 0
     *
     * of amplitude phi and modulus m, using the arithmetic -
     * geometric mean algorithm.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random arguments with phi in [0, 2] and m in
     * [0, 1].
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,2 10000 4.5e-7 7.4e-8
     *
     *
     */
    
    /*							ellikf.c
     *
     *	Incomplete elliptic integral of the first kind
     *
     *
     *
     * SYNOPSIS:
     *
     * float phi, m, y, ellikf();
     *
     * y = ellikf( phi, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *
     * phi
     * -
     * | |
     * | dt
     * F(phi\m) = | ------------------
     * | 2
     * | | sqrt( 1 - m sin t )
     * -
     * 0
     *
     * of amplitude phi and modulus m, using the arithmetic -
     * geometric mean algorithm.
     *
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points with phi in [0, 2] and m in
     * [0, 1].
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,2 10000 2.9e-7 5.8e-8
     *
     *
     */
    
    /*							ellpef.c
     *
     *	Complete elliptic integral of the second kind
     *
     *
     *
     * SYNOPSIS:
     *
     * float m1, y, ellpef();
     *
     * y = ellpef( m1 );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     * pi/2
     * -
     * | | 2
     * E(m) = | sqrt( 1 - m sin t ) dt
     * | | 
     * -
     * 0
     *
     * Where m = 1 - m1, using the approximation
     *
     * P(x) - x log x Q(x).
     *
     * Though there are no singularities, the argument m1 is used
     * rather than m for compatibility with ellpk().
     *
     * E(1) = 1; E(0) = pi/2.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 1 30000 1.1e-7 3.9e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * ellpef domain x<0, x>1 0.0
     *
     */
    
    /*							ellpjf.c
     *
     *	Jacobian Elliptic Functions
     *
     *
     *
     * SYNOPSIS:
     *
     * float u, m, sn, cn, dn, phi;
     * int ellpj();
     *
     * ellpj( u, m, &sn, &cn, &dn, &phi );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
     * and dn(u|m) of parameter m between 0 and 1, and real
     * argument u.
     *
     * These functions are periodic, with quarter-period on the
     * real axis equal to the complete elliptic integral
     * ellpk(1.0-m).
     *
     * Relation to incomplete elliptic integral:
     * If u = ellik(phi,m), then sn(u|m) = sin(phi),
     * and cn(u|m) = cos(phi). Phi is called the amplitude of u.
     *
     * Computation is by means of the arithmetic-geometric mean
     * algorithm, except when m is within 1e-9 of 0 or 1. In the
     * latter case with m close to 1, the approximation applies
     * only for phi < pi/2.
     *
     * ACCURACY:
     *
     * Tested at random points with u between 0 and 10, m between
     * 0 and 1.
     *
     * Absolute error (* = relative error):
     * arithmetic function # trials peak rms
     * IEEE sn 10000 1.7e-6 2.2e-7
     * IEEE cn 10000 1.6e-6 2.2e-7
     * IEEE dn 100000 3.2e-6 2.6e-7
     * IEEE phi 10000 3.9e-7* 6.7e-8*
     *
     * Larger errors occur for m near 1.
     * Peak error observed in consistency check using addition
     * theorem for sn(u+v) was 4e-16 (absolute). Also tested by
     * the above relation to the incomplete elliptic integral.
     * Accuracy deteriorates when u is large.
     *
     */
    
    /*							ellpkf.c
     *
     *	Complete elliptic integral of the first kind
     *
     *
     *
     * SYNOPSIS:
     *
     * float m1, y, ellpkf();
     *
     * y = ellpkf( m1 );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *
     * pi/2
     * -
     * | |
     * | dt
     * K(m) = | ------------------
     * | 2
     * | | sqrt( 1 - m sin t )
     * -
     * 0
     *
     * where m = 1 - m1, using the approximation
     *
     * P(x) - log x Q(x).
     *
     * The argument m1 is used rather than m so that the logarithmic
     * singularity at m = 1 will be shifted to the origin; this
     * preserves maximum accuracy.
     *
     * K(0) = pi/2.
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,1 30000 1.3e-7 3.4e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * ellpkf domain x<0, x>1 0.0
     *
     */
    
    /*							exp10f.c
     *
     *	Base 10 exponential function
     * (Common antilogarithm)
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, exp10f();
     *
     * y = exp10f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 10 raised to the x power.
     *
     * Range reduction is accomplished by expressing the argument
     * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
     * A polynomial approximates 10**f.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -38,+38 100000 9.8e-8 2.8e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * exp10 underflow x < -MAXL10 0.0
     * exp10 overflow x > MAXL10 MAXNUM
     *
     * IEEE single arithmetic: MAXL10 = 38.230809449325611792.
     *
     */
    
    /*							exp2f.c
     *
     *	Base 2 exponential function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, exp2f();
     *
     * y = exp2f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 2 raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     * x k f
     * 2 = 2 2.
     *
     * A polynomial approximates 2**x in the basic range [-0.5, 0.5].
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -127,+127 100000 1.7e-7 2.8e-8
     *
     *
     * See exp.c for comments on error amplification.
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * exp underflow x < -MAXL2 0.0
     * exp overflow x > MAXL2 MAXNUMF
     *
     * For IEEE arithmetic, MAXL2 = 127.
     */
    
    /*							expf.c
     *
     *	Exponential function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, expf();
     *
     * y = expf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns e (2.71828...) raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     *
     * x k f
     * e = 2 e.
     *
     * A polynomial is used to approximate exp(f)
     * in the basic range [-0.5, 0.5].
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +- MAXLOG 100000 1.7e-7 2.8e-8
     *
     *
     * Error amplification in the exponential function can be
     * a serious matter. The error propagation involves
     * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
     * which shows that a 1 lsb error in representing X produces
     * a relative error of X times 1 lsb in the function.
     * While the routine gives an accurate result for arguments
     * that are exactly represented by a double precision
     * computer number, the result contains amplified roundoff
     * error for large arguments not exactly represented.
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * expf underflow x < MINLOGF 0.0
     * expf overflow x > MAXLOGF MAXNUMF
     *
     */
    
    /*							expnf.c
     *
     *		Exponential integral En
     *
     *
     *
     * SYNOPSIS:
     *
     * int n;
     * float x, y, expnf();
     *
     * y = expnf( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Evaluates the exponential integral
     *
     * inf.
     * -
     * | | -xt
     * | e
     * E (x) = | ---- dt.
     * n | n
     * | | t
     * -
     * 1
     *
     *
     * Both n and x must be nonnegative.
     *
     * The routine employs either a power series, a continued
     * fraction, or an asymptotic formula depending on the
     * relative values of n and x.
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 10000 5.6e-7 1.2e-7
     *
     */
    
    /*							expx2f.c
     *
     *	Exponential of squared argument
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, expx2f();
     *
     * y = expx2f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes y = exp(x*x) while suppressing error amplification
     * that would ordinarily arise from the inexactness of the argument x*x.
     * 
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -9.4, 9.4 10^7 1.7e-7 4.7e-8
     *
     */
    
    /*							facf.c
     *
     *	Factorial function
     *
     *
     *
     * SYNOPSIS:
     *
     * float y, facf();
     * int i;
     *
     * y = facf( i );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns factorial of i = 1 * 2 * 3 * ... * i.
     * fac(0) = 1.0.
     *
     * Due to machine arithmetic bounds the largest value of
     * i accepted is 33 in single precision arithmetic.
     * Greater values, or negative ones,
     * produce an error message and return MAXNUM.
     *
     *
     *
     * ACCURACY:
     *
     * For i < 34 the values are simply tabulated, and have
     * full machine accuracy.
     *
     */
    
    /*							fdtrf.c
     *
     *	F distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int df1, df2;
     * float x, y, fdtrf();
     *
     * y = fdtrf( df1, df2, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area from zero to x under the F density
     * function (also known as Snedcor's density or the
     * variance ratio density). This is the density
     * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
     * variables having Chi square distributions with df1
     * and df2 degrees of freedom, respectively.
     *
     * The incomplete beta integral is used, according to the
     * formula
     *
     *	P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
     *
     *
     * The arguments a and b are greater than zero, and x
     * x is nonnegative.
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 2.2e-5 1.1e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * fdtrf domain a<0, b<0, x<0 0.0
     *
     */
    
    /*							fdtrcf()
     *
     *	Complemented F distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int df1, df2;
     * float x, y, fdtrcf();
     *
     * y = fdtrcf( df1, df2, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area from x to infinity under the F density
     * function (also known as Snedcor's density or the
     * variance ratio density).
     *
     *
     * inf.
     * -
     * 1 | | a-1 b-1
     * 1-P(x) = ------ | t (1-t) dt
     * B(a,b) | |
     * -
     * x
     *
     * (See fdtr.c.)
     *
     * The incomplete beta integral is used, according to the
     * formula
     *
     *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 7.3e-5 1.2e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * fdtrcf domain a<0, b<0, x<0 0.0
     *
     */
    
    /*							fdtrif()
     *
     *	Inverse of complemented F distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * float df1, df2, x, y, fdtrif();
     *
     * x = fdtrif( df1, df2, y );
     *
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the F density argument x such that the integral
     * from x to infinity of the F density is equal to the
     * given probability y.
     *
     * This is accomplished using the inverse beta integral
     * function and the relations
     *
     * z = incbi( df2/2, df1/2, y )
     * x = df2 (1-z) / (df1 z).
     *
     * Note: the following relations hold for the inverse of
     * the uncomplemented F distribution:
     *
     * z = incbi( df1/2, df2/2, y )
     * x = df2 z / (df1 (1-z)).
     *
     *
     *
     * ACCURACY:
     *
     * arithmetic domain # trials peak rms
     * Absolute error:
     * IEEE 0,100 5000 4.0e-5 3.2e-6
     * Relative error:
     * IEEE 0,100 5000 1.2e-3 1.8e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * fdtrif domain y <= 0 or y > 1 0.0
     * v < 1
     *
     */
    
    /*							ceilf()
     *							floorf()
     *							frexpf()
     *							ldexpf()
     *							signbitf()
     *							isnanf()
     *							isfinitef()
     *
     *	Single precision floating point numeric utilities
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y;
     * float ceilf(), floorf(), frexpf(), ldexpf();
     * int signbit(), isnan(), isfinite();
     * int expnt, n;
     *
     * y = floorf(x);
     * y = ceilf(x);
     * y = frexpf( x, &expnt );
     * y = ldexpf( x, n );
     * n = signbit(x);
     * n = isnan(x);
     * n = isfinite(x);
     *
     *
     *
     * DESCRIPTION:
     *
     * All four routines return a single precision floating point
     * result.
     *
     * sfloor() returns the largest integer less than or equal to x.
     * It truncates toward minus infinity.
     *
     * sceil() returns the smallest integer greater than or equal
     * to x. It truncates toward plus infinity.
     *
     * sfrexp() extracts the exponent from x. It returns an integer
     * power of two to expnt and the significand between 0.5 and 1
     * to y. Thus x = y * 2**expn.
     *
     * ldexpf() multiplies x by 2**n.
     *
     * signbit(x) returns 1 if the sign bit of x is 1, else 0.
     *
     * These functions are part of the standard C run time library
     * for many but not all C compilers. The ones supplied are
     * written in C for either DEC or IEEE arithmetic. They should
     * be used only if your compiler library does not already have
     * them.
     *
     * The IEEE versions assume that denormal numbers are implemented
     * in the arithmetic. Some modifications will be required if
     * the arithmetic has abrupt rather than gradual underflow.
     */
    
    /*							fresnlf.c
     *
     *	Fresnel integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, S, C;
     * void fresnlf();
     *
     * fresnlf( x, &S, &C );
     *
     *
     * DESCRIPTION:
     *
     * Evaluates the Fresnel integrals
     *
     * x
     * -
     * | |
     * C(x) = | cos(pi/2 t**2) dt,
     * | |
     * -
     * 0
     *
     * x
     * -
     * | |
     * S(x) = | sin(pi/2 t**2) dt.
     * | |
     * -
     * 0
     *
     *
     * The integrals are evaluated by power series for small x.
     * For x >= 1 auxiliary functions f(x) and g(x) are employed
     * such that
     *
     * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
     * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
     *
     *
     *
     * ACCURACY:
     *
     * Relative error.
     *
     * Arithmetic function domain # trials peak rms
     * IEEE S(x) 0, 10 30000 1.1e-6 1.9e-7
     * IEEE C(x) 0, 10 30000 1.1e-6 2.0e-7
     */
    
    /*							gammaf.c
     *
     *	Gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, gammaf();
     * extern int sgngamf;
     *
     * y = gammaf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns gamma function of the argument. The result is
     * correctly signed, and the sign (+1 or -1) is also
     * returned in a global (extern) variable named sgngamf.
     * This same variable is also filled in by the logarithmic
     * gamma function lgam().
     *
     * Arguments between 0 and 10 are reduced by recurrence and the
     * function is approximated by a polynomial function covering
     * the interval (2,3). Large arguments are handled by Stirling's
     * formula. Negative arguments are made positive using
     * a reflection formula. 
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,-33 100,000 5.7e-7 1.0e-7
     * IEEE -33,0 100,000 6.1e-7 1.2e-7
     *
     *
     */
    
    /*							lgamf()
     *
     *	Natural logarithm of gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, lgamf();
     * extern int sgngamf;
     *
     * y = lgamf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of the absolute
     * value of the gamma function of the argument.
     * The sign (+1 or -1) of the gamma function is returned in a
     * global (extern) variable named sgngamf.
     *
     * For arguments greater than 6.5, the logarithm of the gamma
     * function is approximated by the logarithmic version of
     * Stirling's formula. Arguments between 0 and +6.5 are reduced by
     * by recurrence to the interval [.75,1.25] or [1.5,2.5] of a rational
     * approximation. The cosecant reflection formula is employed for
     * arguments less than zero.
     *
     * Arguments greater than MAXLGM = 2.035093e36 return MAXNUM and an
     * error message.
     *
     *
     *
     * ACCURACY:
     *
     *
     *
     * arithmetic domain # trials peak rms
     * IEEE -100,+100 500,000 7.4e-7 6.8e-8
     * The error criterion was relative when the function magnitude
     * was greater than one but absolute when it was less than one.
     * The routine has low relative error for positive arguments.
     *
     * The following test used the relative error criterion.
     * IEEE -2, +3 100000 4.0e-7 5.6e-8
     *
     */
    
    /*							gdtrf.c
     *
     *	Gamma distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, gdtrf();
     *
     * y = gdtrf( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the integral from zero to x of the gamma probability
     * density function:
     *
     *
     * x
     * b -
     * a | | b-1 -at
     * y = ----- | t e dt
     * - | |
     * | (b) -
     * 0
     *
     * The incomplete gamma integral is used, according to the
     * relation
     *
     * y = igam( b, ax ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 5.8e-5 3.0e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * gdtrf domain x < 0 0.0
     *
     */
    
    /*							gdtrcf.c
     *
     *	Complemented gamma distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, gdtrcf();
     *
     * y = gdtrcf( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the integral from x to infinity of the gamma
     * probability density function:
     *
     *
     * inf.
     * b -
     * a | | b-1 -at
     * y = ----- | t e dt
     * - | |
     * | (b) -
     * x
     *
     * The incomplete gamma integral is used, according to the
     * relation
     *
     * y = igamc( b, ax ).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 9.1e-5 1.5e-5
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * gdtrcf domain x < 0 0.0
     *
     */
    
    /*							hyp2f1f.c
     *
     *	Gauss hypergeometric function F
     *	 2 1
     *
     *
     * SYNOPSIS:
     *
     * float a, b, c, x, y, hyp2f1f();
     *
     * y = hyp2f1f( a, b, c, x );
     *
     *
     * DESCRIPTION:
     *
     *
     * hyp2f1( a, b, c, x ) = F ( a, b; c; x )
     * 2 1
     *
     * inf.
     * - a(a+1)...(a+k) b(b+1)...(b+k) k+1
     * = 1 + > ----------------------------- x .
     * - c(c+1)...(c+k) (k+1)!
     * k = 0
     *
     * Cases addressed are
     *	Tests and escapes for negative integer a, b, or c
     *	Linear transformation if c - a or c - b negative integer
     *	Special case c = a or c = b
     *	Linear transformation for x near +1
     *	Transformation for x < -0.5
     *	Psi function expansion if x > 0.5 and c - a - b integer
     * Conditionally, a recurrence on c to make c-a-b > 0
     *
     * |x| > 1 is rejected.
     *
     * The parameters a, b, c are considered to be integer
     * valued if they are within 1.0e-6 of the nearest integer.
     *
     * ACCURACY:
     *
     * Relative error (-1 < x < 1):
     * arithmetic domain # trials peak rms
     * IEEE 0,3 30000 5.8e-4 4.3e-6
     */
    
    /*							hypergf.c
     *
     *	Confluent hypergeometric function
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, hypergf();
     *
     * y = hypergf( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes the confluent hypergeometric function
     *
     * 1 2
     * a x a(a+1) x
     * F ( a,b;x ) = 1 + ---- + --------- + ...
     * 1 1 b 1! b(b+1) 2!
     *
     * Many higher transcendental functions are special cases of
     * this power series.
     *
     * As is evident from the formula, b must not be a negative
     * integer or zero unless a is an integer with 0 >= a > b.
     *
     * The routine attempts both a direct summation of the series
     * and an asymptotic expansion. In each case error due to
     * roundoff, cancellation, and nonconvergence is estimated.
     * The result with smaller estimated error is returned.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points (a, b, x), all three variables
     * ranging from 0 to 30.
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,5 10000 6.6e-7 1.3e-7
     * IEEE 0,30 30000 1.1e-5 6.5e-7
     *
     * Larger errors can be observed when b is near a negative
     * integer or zero. Certain combinations of arguments yield
     * serious cancellation error in the power series summation
     * and also are not in the region of near convergence of the
     * asymptotic series. An error message is printed if the
     * self-estimated relative error is greater than 1.0e-3.
     *
     */
    
    /*							i0f.c
     *
     *	Modified Bessel function of order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, i0();
     *
     * y = i0f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns modified Bessel function of order zero of the
     * argument.
     *
     * The function is defined as i0(x) = j0( ix ).
     *
     * The range is partitioned into the two intervals [0,8] and
     * (8, infinity). Chebyshev polynomial expansions are employed
     * in each interval.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 100000 4.0e-7 7.9e-8
     *
     */
    
    /*							i0ef.c
     *
     *	Modified Bessel function of order zero,
     *	exponentially scaled
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, i0ef();
     *
     * y = i0ef( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns exponentially scaled modified Bessel function
     * of order zero of the argument.
     *
     * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 100000 3.7e-7 7.0e-8
     * See i0f().
     *
     */
    
    /*							i1f.c
     *
     *	Modified Bessel function of order one
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, i1f();
     *
     * y = i1f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns modified Bessel function of order one of the
     * argument.
     *
     * The function is defined as i1(x) = -i j1( ix ).
     *
     * The range is partitioned into the two intervals [0,8] and
     * (8, infinity). Chebyshev polynomial expansions are employed
     * in each interval.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 100000 1.5e-6 1.6e-7
     *
     *
     */
    
    /*							i1ef.c
     *
     *	Modified Bessel function of order one,
     *	exponentially scaled
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, i1ef();
     *
     * y = i1ef( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns exponentially scaled modified Bessel function
     * of order one of the argument.
     *
     * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 30000 1.5e-6 1.5e-7
     * See i1().
     *
     */
    
    /*							igamf.c
     *
     *	Incomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, x, y, igamf();
     *
     * y = igamf( a, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The function is defined by
     *
     * x
     * -
     * 1 | | -t a-1
     * igam(a,x) = ----- | e t dt.
     * - | |
     * | (a) -
     * 0
     *
     *
     * In this implementation both arguments must be positive.
     * The integral is evaluated by either a power series or
     * continued fraction expansion, depending on the relative
     * values of a and x.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 20000 7.8e-6 5.9e-7
     *
     */
    
    /*							igamcf()
     *
     *	Complemented incomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, x, y, igamcf();
     *
     * y = igamcf( a, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The function is defined by
     *
     *
     * igamc(a,x) = 1 - igam(a,x)
     *
     * inf.
     * -
     * 1 | | -t a-1
     * = ----- | e t dt.
     * - | |
     * | (a) -
     * x
     *
     *
     * In this implementation both arguments must be positive.
     * The integral is evaluated by either a power series or
     * continued fraction expansion, depending on the relative
     * values of a and x.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 30000 7.8e-6 5.9e-7
     *
     */
    
    /*							igamif()
     *
     * Inverse of complemented imcomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, x, y, igamif();
     *
     * x = igamif( a, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Given y, the function finds x such that
     *
     * igamc( a, x ) = y.
     *
     * It is valid in the right-hand tail of the distribution, y < 0.5. * Starting with the approximate value * * 3 * x = a t * * where * * t = 1 - d - ndtri(y) sqrt(d) * * and * * d = 1/9a, * * the routine performs up to 10 Newton iterations to find the * root of igamc(a,x) - y = 0. * * * ACCURACY: * * Tested for a ranging from 0 to 100 and x from 0 to 1. * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,100 5000 1.0e-5 1.5e-6 * */ 
    /*							incbetf.c
     *
     *	Incomplete beta integral
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, incbetf();
     *
     * y = incbetf( a, b, x );
     *
     *
     * DESCRIPTION:
     *
     * Returns incomplete beta integral of the arguments, evaluated
     * from zero to x. The function is defined as
     *
     * x
     * - -
     * | (a+b) | | a-1 b-1
     * ----------- | t (1-t) dt.
     * - - | |
     * | (a) | (b) -
     * 0
     *
     * The domain of definition is 0 <= x <= 1. In this
     * implementation a and b are restricted to positive values.
     * The integral from x to 1 may be obtained by the symmetry
     * relation
     *
     * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
     *
     * The integral is evaluated by a continued fraction expansion.
     * If a < 1, the function calls itself recursively after a
     * transformation to increase a to a+1.
     *
     * ACCURACY:
     *
     * Tested at random points (a,b,x) with a and b in the indicated
     * interval and x between 0 and 1.
     *
     * arithmetic domain # trials peak rms
     * Relative error:
     * IEEE 0,30 10000 3.7e-5 5.1e-6
     * IEEE 0,100 10000 1.7e-4 2.5e-5
     * The useful domain for relative error is limited by underflow
     * of the single precision exponential function.
     * Absolute error:
     * IEEE 0,30 100000 2.2e-5 9.6e-7
     * IEEE 0,100 10000 6.5e-5 3.7e-6
     *
     * Larger errors may occur for extreme ratios of a and b.
     *
     * ERROR MESSAGES:
     * message condition value returned
     * incbetf domain x<0, x>1 0.0
     */
    
    /*							incbif()
     *
     * Inverse of imcomplete beta integral
     *
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, incbif();
     *
     * x = incbif( a, b, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Given y, the function finds x such that
     *
     * incbet( a, b, x ) = y.
     *
     * the routine performs up to 10 Newton iterations to find the
     * root of incbet(a,b,x) - y = 0.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * x a,b
     * arithmetic domain domain # trials peak rms
     * IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
     *
     * Overflow and larger errors may occur for one of a or b near zero
     * and the other large.
     */
    
    /*							ivf.c
     *
     *	Modified Bessel function of noninteger order
     *
     *
     *
     * SYNOPSIS:
     *
     * float v, x, y, ivf();
     *
     * y = ivf( v, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns modified Bessel function of order v of the
     * argument. If x is negative, v must be integer valued.
     *
     * The function is defined as Iv(x) = Jv( ix ). It is
     * here computed in terms of the confluent hypergeometric
     * function, according to the formula
     *
     * v -x
     * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
     *
     * If v is a negative integer, then v is replaced by -v.
     *
     *
     * ACCURACY:
     *
     * Tested at random points (v, x), with v between 0 and
     * 30, x between 0 and 28.
     * arithmetic domain # trials peak rms
     * Relative error:
     * IEEE 0,15 3000 4.7e-6 5.4e-7
     * Absolute error (relative when function > 1)
     * IEEE 0,30 5000 8.5e-6 1.3e-6
     *
     * Accuracy is diminished if v is near a negative integer.
     * The useful domain for relative error is limited by overflow
     * of the single precision exponential function.
     *
     * See also hyperg.c.
     *
     */
    
    /*							j0f.c
     *
     *	Bessel function of order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, j0f();
     *
     * y = j0f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order zero of the argument.
     *
     * The domain is divided into the intervals [0, 2] and
     * (2, infinity). In the first interval the following polynomial
     * approximation is used:
     *
     *
     * 2 2 2
     * (w - r ) (w - r ) (w - r ) P(w)
     * 1 2 3 
     *
     * 2
     * where w = x and the three r's are zeros of the function.
     *
     * In the second interval, the modulus and phase are approximated
     * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
     * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
     *
     * j0(x) = Modulus(x) cos( Phase(x) ).
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 2 100000 1.3e-7 3.6e-8
     * IEEE 2, 32 100000 1.9e-7 5.4e-8
     *
     */
    
    /*							y0f.c
     *
     *	Bessel function of the second kind, order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, y0f();
     *
     * y = y0f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind, of order
     * zero, of the argument.
     *
     * The domain is divided into the intervals [0, 2] and
     * (2, infinity). In the first interval a rational approximation
     * R(x) is employed to compute
     *
     * 2 2 2
     * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
     * 1 2 3 
     *
     * Thus a call to j0() is required. The three zeros are removed
     * from R(x) to improve its numerical stability.
     *
     * In the second interval, the modulus and phase are approximated
     * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
     * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
     *
     * y0(x) = Modulus(x) sin( Phase(x) ).
     *
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error, when y0(x) < 1; else relative error:
     *
     * arithmetic domain # trials peak rms
     * IEEE 0, 2 100000 2.4e-7 3.4e-8
     * IEEE 2, 32 100000 1.8e-7 5.3e-8
     *
     */
    
    /*							j1f.c
     *
     *	Bessel function of order one
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, j1f();
     *
     * y = j1f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order one of the argument.
     *
     * The domain is divided into the intervals [0, 2] and
     * (2, infinity). In the first interval a polynomial approximation
     * 2 
     * (w - r ) x P(w)
     * 1 
     * 2 
     * is used, where w = x and r is the first zero of the function.
     *
     * In the second interval, the modulus and phase are approximated
     * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
     * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
     *
     * j0(x) = Modulus(x) cos( Phase(x) ).
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 2 100000 1.2e-7 2.5e-8
     * IEEE 2, 32 100000 2.0e-7 5.3e-8
     *
     *
     */
    
    /*							y1
     *
     *	Bessel function of second kind of order one
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, y1();
     *
     * y = y1( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind of order one
     * of the argument.
     *
     * The domain is divided into the intervals [0, 2] and
     * (2, infinity). In the first interval a rational approximation
     * R(x) is employed to compute
     *
     * 2
     * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
     * 1
     *
     * Thus a call to j1() is required.
     *
     * In the second interval, the modulus and phase are approximated
     * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
     * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
     *
     * y0(x) = Modulus(x) sin( Phase(x) ).
     *
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 2 100000 2.2e-7 4.6e-8
     * IEEE 2, 32 100000 1.9e-7 5.3e-8
     *
     * (error criterion relative when |y1| > 1).
     *
     */
    
    /*							jnf.c
     *
     *	Bessel function of integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * int n;
     * float x, y, jnf();
     *
     * y = jnf( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order n, where n is a
     * (possibly negative) integer.
     *
     * The ratio of jn(x) to j0(x) is computed by backward
     * recurrence. First the ratio jn/jn-1 is found by a
     * continued fraction expansion. Then the recurrence
     * relating successive orders is applied until j0 or j1 is
     * reached.
     *
     * If n = 0 or 1 the routine for j0 or j1 is called
     * directly.
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error:
     * arithmetic range # trials peak rms
     * IEEE 0, 15 30000 3.6e-7 3.6e-8
     *
     *
     * Not suitable for large n or x. Use jvf() instead.
     *
     */
    
    /*							jvf.c
     *
     *	Bessel function of noninteger order
     *
     *
     *
     * SYNOPSIS:
     *
     * float v, x, y, jvf();
     *
     * y = jvf( v, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order v of the argument,
     * where v is real. Negative x is allowed if v is an integer.
     *
     * Several expansions are included: the ascending power
     * series, the Hankel expansion, and two transitional
     * expansions for large v. If v is not too large, it
     * is reduced by recurrence to a region of best accuracy.
     *
     * The single precision routine accepts negative v, but with
     * reduced accuracy.
     *
     *
     *
     * ACCURACY:
     * Results for integer v are indicated by *.
     * Error criterion is absolute, except relative when |jv()| > 1.
     *
     * arithmetic domain # trials peak rms
     * v x
     * IEEE 0,125 0,125 30000 2.0e-6 2.0e-7
     * IEEE -17,0 0,125 30000 1.1e-5 4.0e-7
     * IEEE -100,0 0,125 3000 1.5e-4 7.8e-6
     */
    
    /*							k0f.c
     *
     *	Modified Bessel function, third kind, order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, k0f();
     *
     * y = k0f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns modified Bessel function of the third kind
     * of order zero of the argument.
     *
     * The range is partitioned into the two intervals [0,8] and
     * (8, infinity). Chebyshev polynomial expansions are employed
     * in each interval.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at 2000 random points between 0 and 8. Peak absolute
     * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 30000 7.8e-7 8.5e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * K0 domain x <= 0 MAXNUM
     *
     */
    
    /*							k0ef()
     *
     *	Modified Bessel function, third kind, order zero,
     *	exponentially scaled
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, k0ef();
     *
     * y = k0ef( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns exponentially scaled modified Bessel function
     * of the third kind of order zero of the argument.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 30000 8.1e-7 7.8e-8
     * See k0().
     *
     */
    
    /*							k1f.c
     *
     *	Modified Bessel function, third kind, order one
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, k1f();
     *
     * y = k1f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes the modified Bessel function of the third kind
     * of order one of the argument.
     *
     * The range is partitioned into the two intervals [0,2] and
     * (2, infinity). Chebyshev polynomial expansions are employed
     * in each interval.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 30000 4.6e-7 7.6e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * k1 domain x <= 0 MAXNUM
     *
     */
    
    /*							k1ef.c
     *
     *	Modified Bessel function, third kind, order one,
     *	exponentially scaled
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, k1ef();
     *
     * y = k1ef( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns exponentially scaled modified Bessel function
     * of the third kind of order one of the argument:
     *
     * k1e(x) = exp(x) * k1(x).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 30000 4.9e-7 6.7e-8
     * See k1().
     *
     */
    
    /*							knf.c
     *
     *	Modified Bessel function, third kind, integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, knf();
     * int n;
     *
     * y = knf( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns modified Bessel function of the third kind
     * of order n of the argument.
     *
     * The range is partitioned into the two intervals [0,9.55] and
     * (9.55, infinity). An ascending power series is used in the
     * low range, and an asymptotic expansion in the high range.
     *
     *
     *
     * ACCURACY:
     *
     * Absolute error, relative when function > 1:
     * arithmetic domain # trials peak rms
     * IEEE 0,30 10000 2.0e-4 3.8e-6
     *
     * Error is high only near the crossover point x = 9.55
     * between the two expansions used.
     */
    
    /*							log10f.c
     *
     *	Common logarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, log10f();
     *
     * y = log10f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns logarithm to the base 10 of x.
     *
     * The argument is separated into its exponent and fractional
     * parts. The logarithm of the fraction is approximated by
     *
     * log(1+x) = x - 0.5 x**2 + x**3 P(x).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0.5, 2.0 100000 1.3e-7 3.4e-8
     * IEEE 0, MAXNUMF 100000 1.3e-7 2.6e-8
     *
     * In the tests over the interval [0, MAXNUM], the logarithms
     * of the random arguments were uniformly distributed over
     * [-MAXL10, MAXL10].
     *
     * ERROR MESSAGES:
     *
     * log10f singularity: x = 0; returns -MAXL10
     * log10f domain: x < 0; returns -MAXL10
     * MAXL10 = 38.230809449325611792
     */
    
    /*							log2f.c
     *
     *	Base 2 logarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, log2f();
     *
     * y = log2f( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base 2 logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts. If the exponent is between -1 and +1, the base e
     * logarithm of the fraction is approximated by
     *
     * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting z = 2(x-1)/x+1),
     * 
     * log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE exp(+-88) 100000 1.1e-7 2.4e-8
     * IEEE 0.5, 2.0 100000 1.1e-7 3.0e-8
     *
     * In the tests over the interval [exp(+-88)], the logarithms
     * of the random arguments were uniformly distributed.
     *
     * ERROR MESSAGES:
     *
     * log singularity: x = 0; returns MINLOGF/log(2)
     * log domain: x < 0; returns MINLOGF/log(2)
     */
    
    /*							logf.c
     *
     *	Natural logarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, logf();
     *
     * y = logf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts. If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     * log(1+x) = x - 0.5 x**2 + x**3 P(x)
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0.5, 2.0 100000 7.6e-8 2.7e-8
     * IEEE 1, MAXNUMF 100000 2.6e-8
     *
     * In the tests over the interval [1, MAXNUM], the logarithms
     * of the random arguments were uniformly distributed over
     * [0, MAXLOGF].
     *
     * ERROR MESSAGES:
     *
     * logf singularity: x = 0; returns MINLOG
     * logf domain: x < 0; returns MINLOG
     */
    
    /*							mtherr.c
     *
     *	Library common error handling routine
     *
     *
     *
     * SYNOPSIS:
     *
     * char *fctnam;
     * int code;
     * void mtherr();
     *
     * mtherr( fctnam, code );
     *
     *
     *
     * DESCRIPTION:
     *
     * This routine may be called to report one of the following
     * error conditions (in the include file mconf.h).
     * 
     * Mnemonic Value Significance
     *
     * DOMAIN 1 argument domain error
     * SING 2 function singularity
     * OVERFLOW 3 overflow range error
     * UNDERFLOW 4 underflow range error
     * TLOSS 5 total loss of precision
     * PLOSS 6 partial loss of precision
     * EDOM 33 Unix domain error code
     * ERANGE 34 Unix range error code
     *
     * The default version of the file prints the function name,
     * passed to it by the pointer fctnam, followed by the
     * error condition. The display is directed to the standard
     * output device. The routine then returns to the calling
     * program. Users may wish to modify the program to abort by
     * calling exit() under severe error conditions such as domain
     * errors.
     *
     * Since all error conditions pass control to this function,
     * the display may be easily changed, eliminated, or directed
     * to an error logging device.
     *
     * SEE ALSO:
     *
     * mconf.h
     *
     */
    
    /*							nbdtrf.c
     *
     *	Negative binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * float p, y, nbdtrf();
     *
     * y = nbdtrf( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms 0 through k of the negative
     * binomial distribution:
     *
     * k
     * -- ( n+j-1 ) n j
     * > ( ) p (1-p)
     * -- ( j )
     * j=0
     *
     * In a sequence of Bernoulli trials, this is the probability
     * that k or fewer failures precede the nth success.
     *
     * The terms are not computed individually; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 1.5e-4 1.9e-5
     *
     */
    
    /*							nbdtrcf.c
     *
     *	Complemented negative binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * float p, y, nbdtrcf();
     *
     * y = nbdtrcf( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 to infinity of the negative
     * binomial distribution:
     *
     * inf
     * -- ( n+j-1 ) n j
     * > ( ) p (1-p)
     * -- ( j )
     * j=k+1
     *
     * The terms are not computed individually; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 1.4e-4 2.0e-5
     *
     */
    
    /*							ndtrf.c
     *
     *	Normal distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, ndtrf();
     *
     * y = ndtrf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the Gaussian probability density
     * function, integrated from minus infinity to x:
     *
     * x
     * -
     * 1 | | 2
     * ndtr(x) = --------- | exp( - t /2 ) dt
     * sqrt(2pi) | |
     * -
     * -inf.
     *
     * = ( 1 + erf(z) ) / 2
     * = erfc(z) / 2
     *
     * where z = x/sqrt(2). Computation is via the functions
     * erf and erfc.
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -13,0 50000 1.5e-5 2.6e-6
     *
     *
     * ERROR MESSAGES:
     *
     * See erfcf().
     *
     */
    
    /*							erff.c
     *
     *	Error function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, erff();
     *
     * y = erff( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The integral is
     *
     * x 
     * -
     * 2 | | 2
     * erf(x) = -------- | exp( - t ) dt.
     * sqrt(pi) | |
     * -
     * 0
     *
     * The magnitude of x is limited to 9.231948545 for DEC
     * arithmetic; 1 or -1 is returned outside this range.
     *
     * For 0 <= |x| < 1, erf(x) = x * P(x**2); otherwise
     * erf(x) = 1 - erfc(x).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -9.3,9.3 50000 1.7e-7 2.8e-8
     *
     */
    
    /*							erfcf.c
     *
     *	Complementary error function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, erfcf();
     *
     * y = erfcf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     * 1 - erf(x) =
     *
     * inf. 
     * -
     * 2 | | 2
     * erfc(x) = -------- | exp( - t ) dt
     * sqrt(pi) | |
     * -
     * x
     *
     *
     * For small x, erfc(x) = 1 - erf(x); otherwise polynomial
     * approximations 1/x P(1/x**2) are computed.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -9.3,9.3 50000 3.9e-6 7.2e-7
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * erfcf underflow x**2 > MAXLOGF 0.0
     *
     *
     */
    
    /*							ndtrif.c
     *
     *	Inverse of Normal distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, ndtrif();
     *
     * x = ndtrif( y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the argument, x, for which the area under the
     * Gaussian probability density function (integrated from
     * minus infinity to x) is equal to y.
     *
     *
     * For small arguments 0 < y < exp(-2), the program computes
     * z = sqrt( -2.0 * log(y) ); then the approximation is
     * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
     * There are two rational functions P/Q, one for 0 < y < exp(-32)
     * and the other for y up to exp(-2). For larger arguments,
     * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * ndtrif domain x <= 0 -MAXNUM
     * ndtrif domain x >= 1 MAXNUM
     *
     */
    
    /*							pdtrf.c
     *
     *	Poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * float m, y, pdtrf();
     *
     * y = pdtrf( k, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the first k terms of the Poisson
     * distribution:
     *
     * k j
     * -- -m m
     * > e --
     * -- j!
     * j=0
     *
     * The terms are not summed directly; instead the incomplete
     * gamma integral is employed, according to the relation
     *
     * y = pdtr( k, m ) = igamc( k+1, m ).
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 6.9e-5 8.0e-6
     *
     */
    
    /*							pdtrcf()
     *
     *	Complemented poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * float m, y, pdtrcf();
     *
     * y = pdtrcf( k, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 to infinity of the Poisson
     * distribution:
     *
     * inf. j
     * -- -m m
     * > e --
     * -- j!
     * j=k+1
     *
     * The terms are not summed directly; instead the incomplete
     * gamma integral is employed, according to the formula
     *
     * y = pdtrc( k, m ) = igam( k+1, m ).
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 8.4e-5 1.2e-5
     *
     */
    
    /*							pdtrif()
     *
     *	Inverse Poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * float m, y, pdtrf();
     *
     * m = pdtrif( k, y );
     *
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the Poisson variable x such that the integral
     * from 0 to x of the Poisson density is equal to the
     * given probability y.
     *
     * This is accomplished using the inverse gamma integral
     * function and the relation
     *
     * m = igami( k+1, y ).
     *
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,100 5000 8.7e-6 1.4e-6
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * pdtri domain y < 0 or y >= 1 0.0
     * k < 0
     *
     */
    
    /*							polevlf.c
     *							p1evlf.c
     *
     *	Evaluate polynomial
     *
     *
     *
     * SYNOPSIS:
     *
     * int N;
     * float x, y, coef[N+1], polevlf[];
     *
     * y = polevlf( x, coef, N );
     *
     *
     *
     * DESCRIPTION:
     *
     * Evaluates polynomial of degree N:
     *
     * 2 N
     * y = C + C x + C x +...+ C x
     * 0 1 2 N
     *
     * Coefficients are stored in reverse order:
     *
     * coef[0] = C , ..., coef[N] = C .
     * N 0
     *
     * The function p1evl() assumes that coef[N] = 1.0 and is
     * omitted from the array. Its calling arguments are
     * otherwise the same as polevl().
     *
     *
     * SPEED:
     *
     * In the interest of speed, there are no checks for out
     * of bounds arithmetic. This routine is used by most of
     * the functions in the library. Depending on available
     * equipment features, the user may wish to rewrite the
     * program in microcode or assembly language.
     *
     */
    
    /*							polynf.c
     *							polyrf.c
     * Arithmetic operations on polynomials
     *
     * In the following descriptions a, b, c are polynomials of degree
     * na, nb, nc respectively. The degree of a polynomial cannot
     * exceed a run-time value MAXPOLF. An operation that attempts
     * to use or generate a polynomial of higher degree may produce a
     * result that suffers truncation at degree MAXPOL. The value of
     * MAXPOL is set by calling the function
     *
     * polinif( maxpol );
     *
     * where maxpol is the desired maximum degree. This must be
     * done prior to calling any of the other functions in this module.
     * Memory for internal temporary polynomial storage is allocated
     * by polinif().
     *
     * Each polynomial is represented by an array containing its
     * coefficients, together with a separately declared integer equal
     * to the degree of the polynomial. The coefficients appear in
     * ascending order; that is,
     *
     * 2 na
     * a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .
     *
     *
     *
     * sum = poleva( a, na, x );	Evaluate polynomial a(t) at t = x.
     * polprtf( a, na, D );		Print the coefficients of a to D digits.
     * polclrf( a, na );		Set a identically equal to zero, up to a[na].
     * polmovf( a, na, b );		Set b = a.
     * poladdf( a, na, b, nb, c );	c = b + a, nc = max(na,nb)
     * polsubf( a, na, b, nb, c );	c = b - a, nc = max(na,nb)
     * polmulf( a, na, b, nb, c );	c = b * a, nc = na+nb
     *
     *
     * Division:
     *
     * i = poldivf( a, na, b, nb, c );	c = b / a, nc = MAXPOL
     *
     * returns i = the degree of the first nonzero coefficient of a.
     * The computed quotient c must be divided by x^i. An error message
     * is printed if a is identically zero.
     *
     *
     * Change of variables:
     * If a and b are polynomials, and t = a(x), then
     * c(t) = b(a(x))
     * is a polynomial found by substituting a(x) for t. The
     * subroutine call for this is
     *
     * polsbtf( a, na, b, nb, c );
     *
     *
     * Notes:
     * poldivf() is an integer routine; polevaf() is float.
     * Any of the arguments a, b, c may refer to the same array.
     *
     */
    
    /*							powf.c
     *
     *	Power function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, z, powf();
     *
     * z = powf( x, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes x raised to the yth power. Analytically,
     *
     * x**y = exp( y log(x) ).
     *
     * Following Cody and Waite, this program uses a lookup table
     * of 2**-i/16 and pseudo extended precision arithmetic to
     * obtain an extra three bits of accuracy in both the logarithm
     * and the exponential.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -10,10 100,000 1.4e-7 3.6e-8
     * 1/10 < x < 10, x uniformly distributed.
     * -10 < y < 10, y uniformly distributed.
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * powf overflow x**y > MAXNUMF MAXNUMF
     * powf underflow x**y < 1/MAXNUMF 0.0
     * powf domain x<0 and y noninteger 0.0
     *
     */
    
    /*							powif.c
     *
     *	Real raised to integer power
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, powif();
     * int n;
     *
     * y = powif( x, n );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns argument x raised to the nth power.
     * The routine efficiently decomposes n as a sum of powers of
     * two. The desired power is a product of two-to-the-kth
     * powers of x. Thus to compute the 32767 power of x requires
     * 28 multiplications instead of 32767 multiplications.
     *
     *
     *
     * ACCURACY:
     *
     *
     * Relative error:
     * arithmetic x domain n domain # trials peak rms
     * IEEE .04,26 -26,26 100000 1.1e-6 2.0e-7
     * IEEE 1,2 -128,128 100000 1.1e-5 1.0e-6
     *
     * Returns MAXNUMF on overflow, zero on underflow.
     *
     */
    
    /*							psif.c
     *
     *	Psi (digamma) function
     *
     *
     * SYNOPSIS:
     *
     * float x, y, psif();
     *
     * y = psif( x );
     *
     *
     * DESCRIPTION:
     *
     * d -
     * psi(x) = -- ln | (x)
     * dx
     *
     * is the logarithmic derivative of the gamma function.
     * For integer x,
     * n-1
     * -
     * psi(n) = -EUL + > 1/k.
     * -
     * k=1
     *
     * This formula is used for 0 < n <= 10. If x is negative, it
     * is transformed to a positive argument by the reflection
     * formula psi(1-x) = psi(x) + pi cot(pi x).
     * For general positive x, the argument is made greater than 10
     * using the recurrence psi(x+1) = psi(x) + 1/x.
     * Then the following asymptotic expansion is applied:
     *
     * inf. B
     * - 2k
     * psi(x) = log(x) - 1/2x - > -------
     * - 2k
     * k=1 2k x
     *
     * where the B2k are Bernoulli numbers.
     *
     * ACCURACY:
     * Absolute error, relative when |psi| > 1 :
     * arithmetic domain # trials peak rms
     * IEEE -33,0 30000 8.2e-7 1.2e-7
     * IEEE 0,33 100000 7.3e-7 7.7e-8
     *
     * ERROR MESSAGES:
     * message condition value returned
     * psi singularity x integer <=0 MAXNUMF
     */
    
    /*						rgammaf.c
     *
     *	Reciprocal gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, rgammaf();
     *
     * y = rgammaf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns one divided by the gamma function of the argument.
     *
     * The function is approximated by a Chebyshev expansion in
     * the interval [0,1]. Range reduction is by recurrence
     * for arguments between -34.034 and +34.84425627277176174.
     * 1/MAXNUMF is returned for positive arguments outside this
     * range.
     *
     * The reciprocal gamma function has no singularities,
     * but overflow and underflow may occur for large arguments.
     * These conditions return either MAXNUMF or 1/MAXNUMF with
     * appropriate sign.
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -34,+34 100000 8.9e-7 1.1e-7
     */
    
    /*							shichif.c
     *
     *	Hyperbolic sine and cosine integrals
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, Chi, Shi;
     *
     * shichi( x, &Chi, &Shi );
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integrals
     *
     * x
     * -
     * | | cosh t - 1
     * Chi(x) = eul + ln x + | ----------- dt,
     * | | t
     * -
     * 0
     *
     * x
     * -
     * | | sinh t
     * Shi(x) = | ------ dt
     * | | t
     * -
     * 0
     *
     * where eul = 0.57721566490153286061 is Euler's constant.
     * The integrals are evaluated by power series for x < 8
     * and by Chebyshev expansions for x between 8 and 88.
     * For large x, both functions approach exp(x)/2x.
     * Arguments greater than 88 in magnitude return MAXNUM.
     *
     *
     * ACCURACY:
     *
     * Test interval 0 to 88.
     * Relative error:
     * arithmetic function # trials peak rms
     * IEEE Shi 20000 3.5e-7 7.0e-8
     * Absolute error, except relative when |Chi| > 1:
     * IEEE Chi 20000 3.8e-7 7.6e-8
     */
    
    /*							sicif.c
     *
     *	Sine and cosine integrals
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, Ci, Si;
     *
     * sicif( x, &Si, &Ci );
     *
     *
     * DESCRIPTION:
     *
     * Evaluates the integrals
     *
     * x
     * -
     * | cos t - 1
     * Ci(x) = eul + ln x + | --------- dt,
     * | t
     * -
     * 0
     * x
     * -
     * | sin t
     * Si(x) = | ----- dt
     * | t
     * -
     * 0
     *
     * where eul = 0.57721566490153286061 is Euler's constant.
     * The integrals are approximated by rational functions.
     * For x > 8 auxiliary functions f(x) and g(x) are employed
     * such that
     *
     * Ci(x) = f(x) sin(x) - g(x) cos(x)
     * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
     *
     *
     * ACCURACY:
     * Test interval = [0,50].
     * Absolute error, except relative when > 1:
     * arithmetic function # trials peak rms
     * IEEE Si 30000 2.1e-7 4.3e-8
     * IEEE Ci 30000 3.9e-7 2.2e-8
     */
    
    /*							sindgf.c
     *
     *	Circular sine of angle in degrees
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, sindgf();
     *
     * y = sindgf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of 45 degrees.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the sine is approximated by
     * x + x**3 P(x**2).
     * Between pi/4 and pi/2 the cosine is represented as
     * 1 - x**2 Q(x**2).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-3600 100,000 1.2e-7 3.0e-8
     * 
     * ERROR MESSAGES:
     *
     * message condition value returned
     * sin total loss x > 2^24 0.0
     *
     */
    
    /*							cosdgf.c
     *
     *	Circular cosine of angle in degrees
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, cosdgf();
     *
     * y = cosdgf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of 45 degrees.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the cosine is approximated by
     * 1 - x**2 Q(x**2).
     * Between pi/4 and pi/2 the sine is represented as
     * x + x**3 P(x**2).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
     */
    
    /*							sinf.c
     *
     *	Circular sine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, sinf();
     *
     * y = sinf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4. The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the sine is approximated by
     * x + x**3 P(x**2).
     * Between pi/4 and pi/2 the cosine is represented as
     * 1 - x**2 Q(x**2).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8
     * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
     * 
     * ERROR MESSAGES:
     *
     * message condition value returned
     * sin total loss x > 2^24 0.0
     *
     * Partial loss of accuracy begins to occur at x = 2^13
     * = 8192. Results may be meaningless for x >= 2^24
     * The routine as implemented flags a TLOSS error
     * for x >= 2^24 and returns 0.0.
     */
    
    /*							cosf.c
     *
     *	Circular cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, cosf();
     *
     * y = cosf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4. The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the cosine is approximated by
     * 1 - x**2 Q(x**2).
     * Between pi/4 and pi/2 the sine is represented as
     * x + x**3 P(x**2).
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
     */
    
    /*							sinhf.c
     *
     *	Hyperbolic sine
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, sinhf();
     *
     * y = sinhf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic sine of argument in the range MINLOGF to
     * MAXLOGF.
     *
     * The range is partitioned into two segments. If |x| <= 1, a
     * polynomial approximation is used.
     * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-MAXLOG 100000 1.1e-7 2.9e-8
     *
     */
    
    /*							spencef.c
     *
     *	Dilogarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, spencef();
     *
     * y = spencef( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes the integral
     *
     * x
     * -
     * | | log t
     * spence(x) = - | ----- dt
     * | | t - 1
     * -
     * 1
     *
     * for x >= 0. A rational approximation gives the integral in
     * the interval (0.5, 1.5). Transformation formulas for 1/x
     * and 1-x are employed outside the basic expansion range.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,4 30000 4.4e-7 6.3e-8
     *
     *
     */
    
    /*							sqrtf.c
     *
     *	Square root
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, sqrtf();
     *
     * y = sqrtf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the square root of x.
     *
     * Range reduction involves isolating the power of two of the
     * argument and using a polynomial approximation to obtain
     * a rough value for the square root. Then Heron's iteration
     * is used three times to converge to an accurate value.
     *
     *
     *
     * ACCURACY:
     *
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,1.e38 100000 8.7e-8 2.9e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * sqrtf domain x < 0 0.0
     *
     */
    
    /*							stdtrf.c
     *
     *	Student's t distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * float t, stdtrf();
     * short k;
     *
     * y = stdtrf( k, t );
     *
     *
     * DESCRIPTION:
     *
     * Computes the integral from minus infinity to t of the Student
     * t distribution with integer k > 0 degrees of freedom:
     *
     * t
     * -
     * | |
     * - | 2 -(k+1)/2
     * | ( (k+1)/2 ) | ( x )
     * ---------------------- | ( 1 + --- ) dx
     * - | ( k )
     * sqrt( k pi ) | ( k/2 ) |
     * | |
     * -
     * -inf.
     * 
     * Relation to incomplete beta integral:
     *
     * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
     * where
     * z = k/(k + t**2).
     *
     * For t < -1, this is the method of computation. For higher t,
     * a direct method is derived from integration by parts.
     * Since the function is symmetric about t=0, the area under the
     * right tail of the density is found by calling the function
     * with -t instead of t.
     * 
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +/- 100 5000 2.3e-5 2.9e-6
     */
    
    /*							struvef.c
     *
     * Struve function
     *
     *
     *
     * SYNOPSIS:
     *
     * float v, x, y, struvef();
     *
     * y = struvef( v, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes the Struve function Hv(x) of order v, argument x.
     * Negative x is rejected unless v is an integer.
     *
     * This module also contains the hypergeometric functions 1F2
     * and 3F0 and a routine for the Bessel function Yv(x) with
     * noninteger v.
     *
     *
     *
     * ACCURACY:
     *
     * v varies from 0 to 10.
     * Absolute error (relative error when |Hv(x)| > 1):
     * arithmetic domain # trials peak rms
     * IEEE -10,10 100000 9.0e-5 4.0e-6
     *
     */
    
    /*							tandgf.c
     *
     *	Circular tangent of angle in degrees
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, tandgf();
     *
     * y = tandgf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular tangent of the radian argument x.
     *
     * Range reduction is into intervals of 45 degrees.
     *
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-2^24 50000 2.4e-7 4.8e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * tanf total loss x > 2^24 0.0
     *
     */
    
    /*							cotdgf.c
     *
     *	Circular cotangent of angle in degrees
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, cotdgf();
     *
     * y = cotdgf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of 45 degrees.
     * A common routine computes either the tangent or cotangent.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-2^24 50000 2.4e-7 4.8e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * cot total loss x > 2^24 0.0
     * cot singularity x = 0 MAXNUMF
     *
     */
    
    /*							tanf.c
     *
     *	Circular tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, tanf();
     *
     * y = tanf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular tangent of the radian argument x.
     *
     * Range reduction is modulo pi/4. A polynomial approximation
     * is employed in the basic interval [0, pi/4].
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-4096 100000 3.3e-7 4.5e-8
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * tanf total loss x > 2^24 0.0
     *
     */
    
    /*							cotf.c
     *
     *	Circular cotangent
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, cotf();
     *
     * y = cotf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular cotangent of the radian argument x.
     * A common routine computes either the tangent or cotangent.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE +-4096 100000 3.0e-7 4.5e-8
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * cot total loss x > 2^24 0.0
     * cot singularity x = 0 MAXNUMF
     *
     */
    
    /*							tanhf.c
     *
     *	Hyperbolic tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, tanhf();
     *
     * y = tanhf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic tangent of argument in the range MINLOG to
     * MAXLOG.
     *
     * A polynomial approximation is used for |x| < 0.625.
     * Otherwise,
     *
     * tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE -2,2 100000 1.3e-7 2.6e-8
     *
     */
    
    /*							ynf.c
     *
     *	Bessel function of second kind of integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, ynf();
     * int n;
     *
     * y = ynf( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order n, where n is a
     * (possibly negative) integer.
     *
     * The function is evaluated by forward recurrence on
     * n, starting with values computed by the routines
     * y0() and y1().
     *
     * If n = 0 or 1 the routine for y0 or y1 is called
     * directly.
     *
     *
     *
     * ACCURACY:
     *
     *
     * Absolute error, except relative when y > 1:
     * 
     * arithmetic domain # trials peak rms
     * IEEE 0, 30 10000 2.3e-6 3.4e-7
     *
     *
     * ERROR MESSAGES:
     *
     * message condition value returned
     * yn singularity x = 0 MAXNUMF
     * yn overflow MAXNUMF
     *
     * Spot checked against tables for x, n between 0 and 100.
     *
     */
    
    /*							zetacf.c
     *
     *	Riemann zeta function
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, y, zetacf();
     *
     * y = zetacf( x );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     *
     * inf.
     * - -x
     * zetac(x) = > k , x > 1,
     * -
     * k=2
     *
     * is related to the Riemann zeta function by
     *
     *	Riemann zeta(x) = zetac(x) + 1.
     *
     * Extension of the function definition for x < 1 is implemented.
     * Zero is returned for x > log2(MAXNUM).
     *
     * An overflow error may occur for large negative x, due to the
     * gamma function in the reflection formula.
     *
     * ACCURACY:
     *
     * Tabulated values have full machine accuracy.
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 1,50 30000 5.5e-7 7.5e-8
     *
     *
     */
    
    /*							zetaf.c
     *
     *	Riemann zeta function of two arguments
     *
     *
     *
     * SYNOPSIS:
     *
     * float x, q, y, zetaf();
     *
     * y = zetaf( x, q );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     *
     * inf.
     * - -x
     * zeta(x,q) = > (k+q) 
     * -
     * k=0
     *
     * where x > 1 and q is not a negative integer or zero.
     * The Euler-Maclaurin summation formula is used to obtain
     * the expansion
     *
     * n 
     * - -x
     * zeta(x,q) = > (k+q) 
     * - 
     * k=1 
     *
     * 1-x inf. B x(x+1)...(x+2j)
     * (n+q) 1 - 2j
     * + --------- - ------- + > --------------------
     * x-1 x - x+2j+1
     * 2(n+q) j=1 (2j)! (n+q)
     *
     * where the B2j are Bernoulli numbers. Note that (see zetac.c)
     * zeta(x,1) = zetac(x) + 1.
     *
     *
     *
     * ACCURACY:
     *
     * Relative error:
     * arithmetic domain # trials peak rms
     * IEEE 0,25 10000 6.9e-7 1.0e-7
     *
     * Large arguments may produce underflow in powf(), in which
     * case the results are inaccurate.
     *
     * REFERENCE:
     *
     * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
     * Series, and Products, p. 1073; Academic Press, 1980.
     *
     */
    

    To Cephes home page www.moshier.net:

    Last update: 5 October 2014

    AltStyle によって変換されたページ (->オリジナル) /