(Batch) gradient descent algorithm
Gradient descent is an optimization algorithm that works by efficiently searching the parameter space, intercept($\theta_0$) and slope($\theta_1$) for linear regression, according to the following rule:
\[\begin{aligned} \theta := \theta -\alpha \frac{\delta}{\delta \theta}J(\theta). \end{aligned} \]Note that we used '$:=$' to denote an assign or an update.
The \(J(\theta)\) is known as the cost function and \(\alpha\) is the learning rate, a free parameter. In this tutorial, we're going to use a least squares cost function defined as following:
\[\begin{aligned} J(\theta) = \frac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})^2, \end{aligned} \]where \(m\) is the total number of training examples and $h_\theta(x^{(i)})$ is the hypothesis function defined like this:
\[\begin{aligned} h_\theta(x^{(i)}) = \theta_0 + \theta_1 x^{(i)} \end{aligned} \]where the super script $(i)$ is used to denote the $i^{th}$ sample (we'll save subscripts for the index to a feature when we deal with multi-features).
We need derivatives for both $\theta_0$ and $\theta_1$:
\[\begin{aligned} \frac{\partial}{\partial \theta_0}J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) \end{aligned} \] \[\begin{aligned} = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)}-y^{(i)}) \end{aligned} \] \[\begin{aligned} \frac{\partial}{\partial \theta_1}J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})x^{(i)} \end{aligned} \] \[\begin{aligned} = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)}-y^{(i)})x^{(i)} \end{aligned} \]batch_gradient_descent_alogrithm.png
The following code runs until it converges or reaches iteration maximum. We get $\theta_0$ and $\theta_1$ as its output:
import numpy as np import random import sklearn from sklearn.datasets.samples_generator import make_regression import pylab from scipy import stats def gradient_descent(alpha, x, y, ep=0.0001, max_iter=10000): converged = False iter = 0 m = x.shape[0] # number of samples # initial theta t0 = np.random.random(x.shape[1]) t1 = np.random.random(x.shape[1]) # total error, J(theta) J = sum([(t0 + t1*x[i] - y[i])**2 for i in range(m)]) # Iterate Loop while not converged: # for each training sample, compute the gradient (d/d_theta j(theta)) grad0 = 1.0/m * sum([(t0 + t1*x[i] - y[i]) for i in range(m)]) grad1 = 1.0/m * sum([(t0 + t1*x[i] - y[i])*x[i] for i in range(m)]) # update the theta_temp temp0 = t0 - alpha * grad0 temp1 = t1 - alpha * grad1 # update theta t0 = temp0 t1 = temp1 # mean squared error e = sum( [ (t0 + t1*x[i] - y[i])**2 for i in range(m)] ) if abs(J-e) <= ep: print 'Converged, iterations: ', iter, '!!!' converged = True J = e # update error iter += 1 # update iter if iter == max_iter: print 'Max interactions exceeded!' converged = True return t0,t1 if __name__ == '__main__': x, y = make_regression(n_samples=100, n_features=1, n_informative=1, random_state=0, noise=35) print 'x.shape = %s y.shape = %s' %(x.shape, y.shape) alpha = 0.01 # learning rate ep = 0.01 # convergence criteria # call gredient decent, and get intercept(=theta0) and slope(=theta1) theta0, theta1 = gradient_descent(alpha, x, y, ep, max_iter=1000) print ('theta0 = %s theta1 = %s') %(theta0, theta1) # check with scipy linear regression slope, intercept, r_value, p_value, slope_std_error = stats.linregress(x[:,0], y) print ('intercept = %s slope = %s') %(intercept, slope) # plot for i in range(x.shape[0]): y_predict = theta0 + theta1*x pylab.plot(x,y,'o') pylab.plot(x,y_predict,'k-') pylab.show() print "Done!"
Output:
x.shape = (100, 1) y.shape = (100,) Converged, iterations: 641 !!! theta0 = [-2.81943944] theta1 = [ 43.1387759] intercept = -2.84963639461 slope = 43.2042438802
The regression line in the picture above confirms we got the right result from our Gradient Descent algorithm. Also, the sciPy's stats.linregress reassures (intercept and slope values) the correctness of our outcome (theta0 and theta1).
We need to be a little bit careful when we updates $\theta_0$ and $\theta_1$. First, we calculate the temporary $\theta_0$ and $\theta_1$ with old $\theta_0$ and $\theta_1,ドル and then we get new $\theta_0$ and $\theta_1$ from $temp0$ and $temp1$:
\[\begin{aligned} temp0 := \theta_0 -\alpha \frac{\partial}{\partial \theta_0}J(\theta_0, \theta_1) \end{aligned} \] \[\begin{aligned} temp1 := \theta_1 -\alpha \frac{\partial}{\partial \theta_1}J(\theta_0, \theta_1) \end{aligned} \] \[\begin{aligned} \theta_0 := temp0 \end{aligned} \] \[\begin{aligned} \theta_1 := temp1. \end{aligned} \]The following code is almost the same as the code we used in the previous section but simpler since it utilized numPy better. It runs until it reaches iteration maximum. We get $\theta_0$ and $\theta_1$ as its output:
import numpy as np import random from sklearn.datasets.samples_generator import make_regression import pylab from scipy import stats def gradient_descent_2(alpha, x, y, numIterations): m = x.shape[0] # number of samples theta = np.ones(2) x_transpose = x.transpose() for iter in range(0, numIterations): hypothesis = np.dot(x, theta) loss = hypothesis - y J = np.sum(loss ** 2) / (2 * m) # cost print "iter %s | J: %.3f" % (iter, J) gradient = np.dot(x_transpose, loss) / m theta = theta - alpha * gradient # update return theta if __name__ == '__main__': x, y = make_regression(n_samples=100, n_features=1, n_informative=1, random_state=0, noise=35) m, n = np.shape(x) x = np.c_[ np.ones(m), x] # insert column alpha = 0.01 # learning rate theta = gradient_descent_2(alpha, x, y, 1000) # plot for i in range(x.shape[1]): y_predict = theta[0] + theta[1]*x pylab.plot(x[:,1],y,'o') pylab.plot(x,y_predict,'k-') pylab.show() print "Done!"
Output:
iter 0 | J: 1604.873 iter 1 | J: 1586.636 iter 2 | J: 1568.768 iter 3 | J: 1551.261 ... iter 997 | J: 699.300 iter 998 | J: 699.300 iter 999 | J: 699.300 theta = [ -2.84837957 43.20234847]
batch_gradient_descent_alogrithm2.png
We may also want to see how the batch gradient descent is used for the well known Iris dataset : Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient method
Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization
Python tutorial
Python Home
Introduction
Running Python Programs (os, sys, import)
Modules and IDLE (Import, Reload, exec)
Object Types - Numbers, Strings, and None
Strings - Escape Sequence, Raw String, and Slicing
Strings - Methods
Formatting Strings - expressions and method calls
Files and os.path
Traversing directories recursively
Subprocess Module
Regular Expressions with Python
Regular Expressions Cheat Sheet
Object Types - Lists
Object Types - Dictionaries and Tuples
Functions def, *args, **kargs
Functions lambda
Built-in Functions
map, filter, and reduce
Decorators
List Comprehension
Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism
Hashing (Hash tables and hashlib)
Dictionary Comprehension with zip
The yield keyword
Generator Functions and Expressions
generator.send() method
Iterators
Classes and Instances (__init__, __call__, etc.)
if__name__ == '__main__'
argparse
Exceptions
@static method vs class method
Private attributes and private methods
bits, bytes, bitstring, and constBitStream
json.dump(s) and json.load(s)
Python Object Serialization - pickle and json
Python Object Serialization - yaml and json
Priority queue and heap queue data structure
Graph data structure
Dijkstra's shortest path algorithm
Prim's spanning tree algorithm
Closure
Functional programming in Python
Remote running a local file using ssh
SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table
SQLite 3 - B. Selecting, updating and deleting data
MongoDB with PyMongo I - Installing MongoDB ...
Python HTTP Web Services - urllib, httplib2
Web scraping with Selenium for checking domain availability
REST API : Http Requests for Humans with Flask
Blog app with Tornado
Multithreading ...
Python Network Programming I - Basic Server / Client : A Basics
Python Network Programming I - Basic Server / Client : B File Transfer
Python Network Programming II - Chat Server / Client
Python Network Programming III - Echo Server using socketserver network framework
Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn
Python Coding Questions I
Python Coding Questions II
Python Coding Questions III
Python Coding Questions IV
Python Coding Questions V
Python Coding Questions VI
Python Coding Questions VII
Python Coding Questions VIII
Python Coding Questions IX
Python Coding Questions X
Image processing with Python image library Pillow
Python and C++ with SIP
PyDev with Eclipse
Matplotlib
Redis with Python
NumPy array basics A
NumPy Matrix and Linear Algebra
Pandas with NumPy and Matplotlib
Celluar Automata
Batch gradient descent algorithm
Longest Common Substring Algorithm
Python Unit Test - TDD using unittest.TestCase class
Simple tool - Google page ranking by keywords
Google App Hello World
Google App webapp2 and WSGI
Uploading Google App Hello World
Python 2 vs Python 3
virtualenv and virtualenvwrapper
Uploading a big file to AWS S3 using boto module
Scheduled stopping and starting an AWS instance
Cloudera CDH5 - Scheduled stopping and starting services
Removing Cloud Files - Rackspace API with curl and subprocess
Checking if a process is running/hanging and stop/run a scheduled task on Windows
Apache Spark 1.3 with PySpark (Spark Python API) Shell
Apache Spark 1.2 Streaming
bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...
Flask app with Apache WSGI on Ubuntu14/CentOS7 ...
Selenium WebDriver
Fabric - streamlining the use of SSH for application deployment
Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App
Neural Networks with backpropagation for XOR using one hidden layer
NLP - NLTK (Natural Language Toolkit) ...
RabbitMQ(Message broker server) and Celery(Task queue) ...
OpenCV3 and Matplotlib ...
Simple tool - Concatenating slides using FFmpeg ...
iPython - Signal Processing with NumPy
iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github
iPython and Jupyter Notebook with Embedded D3.js
Downloading YouTube videos using youtube-dl embedded with Python
Machine Learning : scikit-learn ...
Django 1.6/1.8 Web Framework ...
OpenCV 3 image and video processing with Python
OpenCV 3 with Python
Image - OpenCV BGR : Matplotlib RGB
Basic image operations - pixel access
iPython - Signal Processing with NumPy
Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal
Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT
Inverse Fourier Transform of an Image with low pass filter: cv2.idft()
Image Histogram
Video Capture and Switching colorspaces - RGB / HSV
Adaptive Thresholding - Otsu's clustering-based image thresholding
Edge Detection - Sobel and Laplacian Kernels
Canny Edge Detection
Hough Transform - Circles
Watershed Algorithm : Marker-based Segmentation I
Watershed Algorithm : Marker-based Segmentation II
Image noise reduction : Non-local Means denoising algorithm
Image object detection : Face detection using Haar Cascade Classifiers
Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts
Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods
Video : Mean shift object tracking
Machine Learning : Clustering - K-Means clustering I
Machine Learning : Clustering - K-Means clustering II
Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm
Machine Learning with scikit-learn
scikit-learn installation
scikit-learn : Features and feature extraction - iris dataset
scikit-learn : Machine Learning Quick Preview
scikit-learn : Data Preprocessing I - Missing / Categorical data
scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization
scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests
Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)
scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)
scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis
scikit-learn : Logistic Regression, Overfitting & regularization
scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset
scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset
scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)
scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain
scikit-learn : Decision Tree Learning II - Constructing the Decision Tree
scikit-learn : Random Decision Forests Classification
scikit-learn : Support Vector Machines (SVM)
scikit-learn : Support Vector Machines (SVM) II
Flask with Embedded Machine Learning I : Serializing with pickle and DB setup
Flask with Embedded Machine Learning II : Basic Flask App
Flask with Embedded Machine Learning III : Embedding Classifier
Flask with Embedded Machine Learning IV : Deploy
Flask with Embedded Machine Learning V : Updating the classifier
scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one
Machine learning algorithms and concepts
Batch gradient descent algorithmSingle Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function
Batch gradient descent versus stochastic gradient descent
Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method
Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)
Logistic Regression
VC (Vapnik-Chervonenkis) Dimension and Shatter
Bias-variance tradeoff
Maximum Likelihood Estimation (MLE)
Neural Networks with backpropagation for XOR using one hidden layer
minHash
tf-idf weight
Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)
Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)
Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)
Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)
Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)
Artificial Neural Networks (ANN)
[Note] Sources are available at Github - Jupyter notebook files1. Introduction
2. Forward Propagation
3. Gradient Descent
4. Backpropagation of Errors
5. Checking gradient
6. Training via BFGS
7. Overfitting & Regularization
8. Deep Learning I : Image Recognition (Image uploading)
9. Deep Learning II : Image Recognition (Image classification)
10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras