NumPy array basics B
This chapter is the continuation from NumPy Array Basics A. We've been playing with the following NumPy array:
>>> import numpy as np>>> rArray = np.arange(0,20).reshape((5,4))>>> rArray array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]])
In previous chapter, we've learned slicing NumPy array works just like python list.
Much like python lists, we can assign values to specific positions:
>>> squareArray = rArray[:3:,:3,]>>> squareArray array([[ 0, 1, 2], [ 4, 50, 6], [ 8, 9, 100]])>>> squareArray[0,0] *= 10>>> squareArray[1,1] *= 10>>> squareArray[2,2] *= 10>>> squareArray array([[ 0, 1, 2], [ 4, 500, 6], [ 8, 9, 1000]])
We can slice a NumPy array, and assign values to it. The example below, slices the first row and assigns -1 to the elements of the 1st row:
>>> squareArray array([[ 0, 1, 2], [ 4, 500, 6], [ 8, 9, 1000]])>>> squareArray[:1:,] = -1>>> squareArray array([[ -1, -1, -1], [ 4, 500, 6], [ 8, 9, 1000]])
We can indexing NumPy array using an array of indices:
>>> import numpy as np>>> indxArr = np.array([0,1,1,2,3])>>> indxArr array([0, 1, 1, 2, 3])>>> rnd = np.random.random((10,1))>>> rnd array([[ 0.20903716], [ 0.98787586], [ 0.12038364], [ 0.54208977], [ 0.49319279], [ 0.77011847], [ 0.57856482], [ 0.55202036], [ 0.58084383], [ 0.45641956]])>>> rnd[indxArr] array([[ 0.20903716], [ 0.98787586], [ 0.98787586], [ 0.12038364], [ 0.54208977]])
We first defined NumPy index array, indxArr, and then use it to access elements of random NumPy array, rnd. As we can see from the output, we were able to get 0th, 1st, 1st, 2nd, and 3rd elements of the random array.
The np.empty(...) is filled with random/junk values:
>>> import numpy as np>>> emptyArray = np.empty((2,3))>>> emptyArray array([[ 0.00000000e+000, 3.39519327e-313, 0.00000000e+000], [ 4.94065646e-324, 1.83322544e-316, 6.94110822e-310]])
It looks like random, but it's not. So, if we need real random numbers, we should not use this empty(...).
We can do indexing NumPy array with boolean array:
>>> squareArray array([[ -1, -1, -1], [ 4, 500, 6], [ 8, 9, 1000]])>>> boolArray array([[ True, False, False], [False, True, False], [False, False, True]], dtype=bool)>>> squareArray[boolArray] array([ -1, 500, 1000])
We set the index array with bool value True only for the diagonal elements, and we were able to get only those items as 1-D array.
>>> squareArray array([[ -1, -1, -1], [ 4, 500, 6], [ 8, 9, 1000]])>>> indxRow = np.array([False, True, False])>>> indxCol = np.array([True, False, True])>>> squareArray[indxRow, indxCol] array([4, 6])
indxRow wanted only the 2nd row, and indxCol wanted only the 1st and the 3rd, and we got the right one.
We can use a boolean matrix based on some test and use that as an index in order to get the elements of a matrix that pass the test:
We can use a boolean matrix based on some test and use that as an index in order to get the elements of a matrix that pass the test:
>>> import numpy as np>>> myArray = np.arange(0,9).reshape(3,3)>>> myArray array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])>>> myAverage = np.average(myArray)>>> myAverage 4.0>>> aboveAverage = myArray > myAverage>>> aboveAverage array([[False, False, False], [False, False, True], [ True, True, True]], dtype=bool)>>> myArray[aboveAverage] array([5, 6, 7, 8])
The way of indexing as in the previous section can also be used to assign values to elements of the array. This is particularly useful if we want to filter an array. We can sure that all of its values are above/below a certain threshold:
We'll use std(...) which returns the standard deviation of all the elements in the given array.
>>> import numpy as np>>> myArray = np.arange(0,9).reshape(3,3)>>> myArray array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) ...>>> myArray[aboveAverage] array([5, 6, 7, 8])>>> standDeviation = np.std(myArray)>>> standardDev = np.std(myArray)>>> standardDev 2.5819888974716112
We'll make a copy of myArray that will be clamped. It will only contain values within one standard deviation of the mean. Values that are too low or to high will be set to the min and max respectively. We set dtype=float because usually myAverage and standardDev are floating point numbers.
>>> clampedMyArray = np.array(myArray.copy(), dtype=float) >>> clampedMyArray array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]])>>> clampedMyArray[ (myArray-myAverage) > standardDev ] = myAverage+standardDev>>> clampedMyArray[ (myArray-myAverage) < -standardDev ] = myAverage-standardDev >>> clampedMyArray array([[ 1.4180111, 1.4180111, 2. ], [ 3. , 4. , 5. ], [ 6. , 6.5819889, 6.5819889]])>>>
>>> import numpy as np>>> myArray = np.arange(1,10).reshape(3,3)>>> myArray array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])>>> myArray*10 array([[10, 20, 30], [40, 50, 60], [70, 80, 90]])>>> myZeros = myArray * np.zeros((3,3))>>> myZeros array([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]])>>> addedOnes = myArray + np.ones((3,3))>>> addedOnes array([[ 2., 3., 4.], [ 5., 6., 7.], [ 8., 9., 10.]])
{dot} is actually matrix multiplication:
>>> A = np.array( [ [1,2],[3,4] ] )>>> B = np.array( [ [5,6],[7,8] ] )>>> np.dot(A,B) array([[19, 22], [43, 50]])
>>> a = np.arange(10)>>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>> b = a + 1>>> b array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])>>> np.append(b, [11,12]) array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
>>> numpy.where(condition[, x, y])
It return elements, either from x or y, depending on condition.
If only condition is given, return condition.nonzero().
Parameters :
- condition : array_like, bool When True, yield x, otherwise yield y.
- x, y : array_like, optional Values from which to choose. x and y need to have the same shape as condition.
Returns :
out : ndarray or tuple of ndarrays If both x and y are specified, the output array contains elements of x where condition is True, and elements from y elsewhere. If only condition is given, return the tuple condition.nonzero(), the indices where condition is True.
Only the condition is given, where returns the indices for the elements that satisfying the condition:
>>> x = np.arange(9).reshape(3,3)>>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])>>> np.where(x>7) (array([2]), array([2]))
It returns (2,2) as indices for the element '8'.
>>> np.where(x <= 3) (array([0, 0, 0, 1]), array([0, 1, 2, 0]))
If several elements meet the condition, it returns indices for all those elements (1st 4 elements are <= 3) as shown in the example above.
Following example shows the case when both x and y are given with the condition. If condition is met, where() returns x-element, otherwise it returns y-element. In the example, it returns x's diagonal elements, and y's elements are returned off-diagonal positions:
>>> np.where([ [True, False, False], [False, True, False], [False, False, True] ], ... [ [11, 12, 13], [21, 22, 23], [31, 32, 33] ], ... [ [911, 912, 913], [921, 922, 923], [931, 932, 933] ]) array([[ 11, 912, 913], [921, 22, 923], [931, 932, 33]])
In the same context, the example below returns diagonal indices (0,0), (1,1), and (2,2):
>>> np.where( [ [1,0,0],[0,1,0],[0,0,1] ]) (array([0, 1, 2]), array([0, 1, 2]))
Let's look at more cases;
>>> x = np.arange(9.).reshape(3, 3)>>> x array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]])>>> np.where( x > 5 ) (array([2, 2, 2]), array([0, 1, 2]))>>> x[np.where( x > 5 )] array([ 6., 7., 8.])>>> x[np.where(x<5)] array([ 0., 1., 2., 3., 4.])
The following example works as a sort of mask: if any element of x not satisfying x < 5, -1 will replace the element:
>>> np.where(x<5, x, -1) array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]])
>>> x = [1,2,3,4,5]>>> y = [11,12,13,14,15]>>> condition = [True,False,True,False,True]>>> [xv if c else yv for (c,xv,yv) in zip(condition,x,y)] [1, 12, 3, 14, 5]
The same thing can be done using NumPy's where:
>>> import numpy as np>>> np.where([1,0,1,0,1], np.arange(1,6), np.arange(11,16)) array([ 1, 12, 3, 14, 5])
The astype cast to a specified type:
>>> x = np.array([1.1, 2.2, 3.3])>>> x array([ 1.1, 2.2, 3.3])>>> x.astype(int) array([1, 2, 3])
A little bit complex example:
mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
If mask==2 or mask== 1, mask2 get 0, other wise it gets 1 as 'uint8' type.
Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization
Python tutorial
Python Home
Introduction
Running Python Programs (os, sys, import)
Modules and IDLE (Import, Reload, exec)
Object Types - Numbers, Strings, and None
Strings - Escape Sequence, Raw String, and Slicing
Strings - Methods
Formatting Strings - expressions and method calls
Files and os.path
Traversing directories recursively
Subprocess Module
Regular Expressions with Python
Regular Expressions Cheat Sheet
Object Types - Lists
Object Types - Dictionaries and Tuples
Functions def, *args, **kargs
Functions lambda
Built-in Functions
map, filter, and reduce
Decorators
List Comprehension
Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism
Hashing (Hash tables and hashlib)
Dictionary Comprehension with zip
The yield keyword
Generator Functions and Expressions
generator.send() method
Iterators
Classes and Instances (__init__, __call__, etc.)
if__name__ == '__main__'
argparse
Exceptions
@static method vs class method
Private attributes and private methods
bits, bytes, bitstring, and constBitStream
json.dump(s) and json.load(s)
Python Object Serialization - pickle and json
Python Object Serialization - yaml and json
Priority queue and heap queue data structure
Graph data structure
Dijkstra's shortest path algorithm
Prim's spanning tree algorithm
Closure
Functional programming in Python
Remote running a local file using ssh
SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table
SQLite 3 - B. Selecting, updating and deleting data
MongoDB with PyMongo I - Installing MongoDB ...
Python HTTP Web Services - urllib, httplib2
Web scraping with Selenium for checking domain availability
REST API : Http Requests for Humans with Flask
Blog app with Tornado
Multithreading ...
Python Network Programming I - Basic Server / Client : A Basics
Python Network Programming I - Basic Server / Client : B File Transfer
Python Network Programming II - Chat Server / Client
Python Network Programming III - Echo Server using socketserver network framework
Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn
Python Coding Questions I
Python Coding Questions II
Python Coding Questions III
Python Coding Questions IV
Python Coding Questions V
Python Coding Questions VI
Python Coding Questions VII
Python Coding Questions VIII
Python Coding Questions IX
Python Coding Questions X
Image processing with Python image library Pillow
Python and C++ with SIP
PyDev with Eclipse
Matplotlib
Redis with Python
NumPy array basics A
NumPy Matrix and Linear Algebra
Pandas with NumPy and Matplotlib
Celluar Automata
Batch gradient descent algorithm
Longest Common Substring Algorithm
Python Unit Test - TDD using unittest.TestCase class
Simple tool - Google page ranking by keywords
Google App Hello World
Google App webapp2 and WSGI
Uploading Google App Hello World
Python 2 vs Python 3
virtualenv and virtualenvwrapper
Uploading a big file to AWS S3 using boto module
Scheduled stopping and starting an AWS instance
Cloudera CDH5 - Scheduled stopping and starting services
Removing Cloud Files - Rackspace API with curl and subprocess
Checking if a process is running/hanging and stop/run a scheduled task on Windows
Apache Spark 1.3 with PySpark (Spark Python API) Shell
Apache Spark 1.2 Streaming
bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...
Flask app with Apache WSGI on Ubuntu14/CentOS7 ...
Selenium WebDriver
Fabric - streamlining the use of SSH for application deployment
Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App
Neural Networks with backpropagation for XOR using one hidden layer
NLP - NLTK (Natural Language Toolkit) ...
RabbitMQ(Message broker server) and Celery(Task queue) ...
OpenCV3 and Matplotlib ...
Simple tool - Concatenating slides using FFmpeg ...
iPython - Signal Processing with NumPy
iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github
iPython and Jupyter Notebook with Embedded D3.js
Downloading YouTube videos using youtube-dl embedded with Python
Machine Learning : scikit-learn ...
Django 1.6/1.8 Web Framework ...
OpenCV 3 image and video processing with Python
OpenCV 3 with Python
Image - OpenCV BGR : Matplotlib RGB
Basic image operations - pixel access
iPython - Signal Processing with NumPy
Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal
Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT
Inverse Fourier Transform of an Image with low pass filter: cv2.idft()
Image Histogram
Video Capture and Switching colorspaces - RGB / HSV
Adaptive Thresholding - Otsu's clustering-based image thresholding
Edge Detection - Sobel and Laplacian Kernels
Canny Edge Detection
Hough Transform - Circles
Watershed Algorithm : Marker-based Segmentation I
Watershed Algorithm : Marker-based Segmentation II
Image noise reduction : Non-local Means denoising algorithm
Image object detection : Face detection using Haar Cascade Classifiers
Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts
Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods
Video : Mean shift object tracking
Machine Learning : Clustering - K-Means clustering I
Machine Learning : Clustering - K-Means clustering II
Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm
Machine Learning with scikit-learn
scikit-learn installation
scikit-learn : Features and feature extraction - iris dataset
scikit-learn : Machine Learning Quick Preview
scikit-learn : Data Preprocessing I - Missing / Categorical data
scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization
scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests
Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)
scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)
scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis
scikit-learn : Logistic Regression, Overfitting & regularization
scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset
scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset
scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)
scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain
scikit-learn : Decision Tree Learning II - Constructing the Decision Tree
scikit-learn : Random Decision Forests Classification
scikit-learn : Support Vector Machines (SVM)
scikit-learn : Support Vector Machines (SVM) II
Flask with Embedded Machine Learning I : Serializing with pickle and DB setup
Flask with Embedded Machine Learning II : Basic Flask App
Flask with Embedded Machine Learning III : Embedding Classifier
Flask with Embedded Machine Learning IV : Deploy
Flask with Embedded Machine Learning V : Updating the classifier
scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one
Machine learning algorithms and concepts
Batch gradient descent algorithmSingle Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function
Batch gradient descent versus stochastic gradient descent
Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method
Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)
Logistic Regression
VC (Vapnik-Chervonenkis) Dimension and Shatter
Bias-variance tradeoff
Maximum Likelihood Estimation (MLE)
Neural Networks with backpropagation for XOR using one hidden layer
minHash
tf-idf weight
Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)
Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)
Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)
Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)
Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)
Artificial Neural Networks (ANN)
[Note] Sources are available at Github - Jupyter notebook files1. Introduction
2. Forward Propagation
3. Gradient Descent
4. Backpropagation of Errors
5. Checking gradient
6. Training via BFGS
7. Overfitting & Regularization
8. Deep Learning I : Image Recognition (Image uploading)
9. Deep Learning II : Image Recognition (Image classification)
10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras