| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 10 초 | 1024 MB | 71 | 28 | 16 | 30.769% |
Minseok and Martin have two weighted trees $T_1, T_2$. They share the same vertex set of size $n,ドル where we index each vertex with integers from 1,ドル 2, \ldots, n$.
For a given $k,ドル Minseok selects $k$ edges from $T_1,ドル and Martin selects $n-1-k$ edges from $T_2$. The union of their selected edges should form a tree. If this is possible, they should minimize the total weight of selected edges.
In the first line, a single integer $N$ denoting the number of vertices in both trees is given.
In the next $N-1$ lines, description of the first tree is given. Each of the $N-1$ lines contains three integers $S_i, E_i, W_i,ドル which indicates there is an edge connecting two vertices $S_i, E_i$ with weight $W_i$.
In the next $N-1$ lines, description of the second tree is given in the same format.
For all 0ドル \le k \le n - 1,ドル print the minimum total weight, or print -1 if it is impossible.
5 1 2 10 2 4 20 3 4 30 4 5 50 1 2 15 1 3 25 1 4 35 1 5 25
100 85 80 85 110
9 5 7 6577 4 5 8869 5 9 9088 2 1 124 6 2 410 2 8 8154 4 8 4810 3 4 4268 3 9 763 6 2 8959 7 4 7984 3 8 504 8 6 9085 5 2 4861 1 9 8539 1 7 7834
48529 39568 31019 26748 25491 25661 29669 33975 42300
University > KAIST > KAIST ICPC Mock Competition > 2025 KAIST 15th ICPC Mock Competition H번
University > MIT > The MIT Programming Contest > 2025-26 > MIT Team Contest 2 H번