| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 1 초 | 1024 MB | 106 | 56 | 49 | 50.000% |
수직선 위에 서로 다른 위치에 있는 두 점이 있다. 두 점은 아래 규칙에 따라 이동한다.
두 점이 이동을 마친 후, 같은 위치에 있다면 두 점이 만났다고 하자. 두 점의 시작 위치가 주어질 때 두 점이 만나기 위한 최소 이동 횟수와 최소 이동 횟수로 만나는 최종 위치의 개수를 구해보자.
첫째 줄에 두 점의 최초 위치를 나타내는 정수 $A,ドル $B$가 공백으로 구분되어 주어진다. $(-10^9≤A,B≤10^9, A\ne B)$
두 점이 만나기 위한 최소 이동 횟수와 최소 이동 횟수로 만나는 최종 위치의 개수를 공백으로 구분하여 출력한다. 만약 두 점이 영원히 만날 수 없다면 대신 -1을 출력한다.
-2 8
3 3
123 45
6 25
6 49
-1
University > 충남대학교 > 2025 충남대학교 SW-IT Contest N번