| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 1 초 | 2048 MB | 21 | 9 | 8 | 88.889% |
Randias is facing his primary school homework:
Find a nonzero integer sequence $a$ of length 2ドルn$ satisfying
\begin{alignat*}{26} (&a_1 &\times& &a_2&)&+&(&a_3& &\times& &a_4&)&+& & \ldots & & &+&(&a_{2n-1}& &\times& a_{2n}&)\\ = &a_1 &\times&(&a_2& &+& &a_3&)&\times&(&a_4& &+& a_5)\times& \ldots & \times&(a_{2n-2} &+& &a_{2n-1}&)&\times& a_{2n}&\ne 0\text{.} \end{alignat*}
In shorter form, $\sum\limits_{i=1}^n a_{2i-1} a_{2i} = a_1 a_{2n} \prod\limits_{i=2}^{n} (a_{2i-2} + a_{2i-1}) \ne 0$.
Of course, Randias knows how to solve it. But he wants to give you a test. Can you solve the question above?
Each test contains multiple test cases. The first line contains a single integer $t$ (1ドル \leq t \leq 10^5$) denoting the number of test cases.
For each test case, the only line contains a single integer $n$ (2ドル \le n \le 10^5$).
It is guaranteed that the sum of $n$ over all test cases does not exceed 2ドル \cdot 10^5$.
For each test case, output one line with 2ドル n$ integers: $a_1, a_2, \ldots, a_{2n}$ (1ドル \le |a_i| \le 10^{10}$).
It can be shown that the answer always exists.
If there are several possible answers, output any one of them.
3 2 3 4
1 -3 -3 1 1 -10 6 6 -10 1 1 -15 10 -1 -1 10 -15 1