Logo
(追記) (追記ここまで)

33382번 - Computer Network 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 2048 MB98787.500%

문제

The additive-increase/multiplicative-decrease (AIMD) algorithm is a feedback control algorithm best known for its use in TCP congestion control. AIMD combines linear growth of the congestion window when there is no congestion with an exponential reduction when congestion is detected. Multiple flows using AIMD congestion control will eventually converge to an equal usage of a shared link. (from Wikipedia)

You are given two arrays of $n$ integers: $a$ and $b$. You can perform operations on the array $a$. In one operation, you can let $a_i$ become $a_i+1$ for all 1ドル \leq i \leq n,ドル or let $a_i$ become $\left\lfloor \frac{a_i}{2} \right\rfloor$ for all 1ドル \leq i \leq n$.

Find the minimum number of operations that you have to perform to transform $a$ into $b,ドル or determine that it is impossible.

입력

The first line contains an integer $n$ (1ドル \leq n \leq 10^6$).

The second line contains the integer array $a_1, a_2, \ldots, a_n$ (0ドル \leq a_i \leq 10^9$).

The third line contains the integer array $b_1, b_2, \ldots, b_n$ (0ドル \leq b_i \leq 10^9$).

출력

Print the minimum number of operations needed, or $-1$ if it's impossible to transform $a$ into $b$.

제한

예제 입력 1

5
1 2 3 4 5
6 6 6 6 7

예제 출력 1

9

예제 입력 2

3
2 3 4
1 2 3

예제 출력 2

-1

예제 입력 3

2
65536 65537
1 2

예제 출력 3

32

힌트

출처

Camp > Petrozavodsk Programming Camp > Summer 2023 > Day 6: olmrgcsi And His Friends’ Contest C번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /