Logo
(追記) (追記ここまで)

33376번 - Growing Sequences 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 2048 MB444100.000%

문제

In scientific research, exponentially growing sequences appear quite often. Some researches are especially interested in integer arrays of length $n$ where each element is at least twice as large as the previous one: formally, 2ドル \cdot a_{i} \le a_{i+1}$ for 1ドル \leq i \leq n - 1$. They want to calculate the number of different bounded arrays satisfying this condition.

Help them! Count the number of such arrays consisting of integers from 1ドル$ to $c$. Since this number can be very large, you should output it modulo 998ドル,244円,353円$.

입력

The only line contains two integers $n$ and $c$ (1ドル \le n \le 60$; 1ドル \le c \le 10^{18}$): the length of the arrays and the maximum value of their elements.

출력

Output the number of different arrays modulo 998ドル,244円,353円$.

제한

예제 입력 1

1 5

예제 출력 1

5

예제 입력 2

3 6

예제 출력 2

4

예제 입력 3

15 179

예제 출력 3

0

예제 입력 4

35 1234567887654321

예제 출력 4

576695683

노트

In the first example, there are 5ドル$ different arrays: $[1],ドル $[2],ドル $[3],ドル $[4],ドル $[5]$.

In the second example, there are 4ドル$ different arrays: $[1, 2, 4],ドル $[1, 2, 5],ドル $[1, 2, 6],ドル $[1, 3, 6]$.

In the third example, there are no arrays satisfying the conditions.

출처

Camp > Petrozavodsk Programming Camp > Summer 2023 > Day 5: Moscow IPT Yolki-Palki Contest 1 G번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /