| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 2 초 | 2048 MB | 8 | 3 | 3 | 42.857% |
You are given an array $a[1..n]$ consisting of $n$ integers from 1ドル$ to $n$. A subsegment $a[\ell..r]$ of the array is its consecutive part from position $\ell$ to position $r,ドル inclusive.
A subsegment $a[\ell..r]$ is $k$-good if the following conditions are satisfied:
For each $k$ from 1ドル$ to $\left\lfloor\frac{n}{2}\right\rfloor,ドル find the number of $k$-good subsegments of the given array $a$.
The first line contains an integer $t$ (1ドル \le t \le 5 \cdot 10^5$), the number of test cases. The test cases follow.
The first line of each test case contains an integer $n$ (2ドル \le n \le 5 \cdot 10^5$).
The second line consists of $n$ integers $a_1, a_2, \ldots, a_n$ (1ドル \le a_i \le n$).
The sum of $n$ over all test cases does not exceed 5ドル \cdot 10^5$.
For each test case, print a line with $\left\lfloor\frac{n}{2}\right\rfloor$ integers: the number of $k$-good subsegments for each corresponding $k,ドル starting from 1ドル$.
4 10 1 2 2 2 2 2 3 2 2 2 6 1 1 1 2 1 1 9 2 2 1 1 1 2 2 1 1 10 3 2 3 2 4 2 10 10 10 10
28 11 3 0 0 10 2 0 16 3 0 0 10 1 0 0 0