Logo
(追記) (追記ここまで)

32470번 - Running in the Plane 스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 (추가 시간 없음) 1024 MB (추가 메모리 없음)161262418.605%

문제

You are given a set $S=\{(a_1,b_1) ,(a_2,b_2) ,\dots ,(a_n,b_n)\}$ of $n$ points in the plane. All coordinates of $S$ are integers.

A set $T=\{(c_1,d_1) ,(c_2,d_2) ,\dots ,(c_m,d_m)\}$ of $m$ 2-dimensional vectors is called a good set of $S$ if it satisfies the following:

  1. There exists a nonempty finite sequence $((x_0,y_0) ,(x_1,y_1) ,\dots ,(x_l,y_l))$ of points in the plane such that
    1. $(x_0,y_0) =(0,0)$.
    2. For all points $p$ in $S,ドル there exists an integer $i$ (0ドル\le i\le l$) such that $(x_i,y_i) =p$.
    3. For all integers $i$ (0ドル\le i<l$), the vector $(x_{i+1}-x_i,y_{i+1}-y_i)$ is in $T$.
  2. For all integers $i$ (1ドル\le i\le m$), two numbers $c_i$ and $d_i$ are integers between $-10^{18}$ and 10ドル^{18}$ inclusive.

Find any good set of minimum size.

입력

The input consists of multiple test cases. The first line contains an integer $Q$ — the number of test cases. The description of the test cases follows. For each test case:

  • The first line of the test case contains an integer $n$ — the number of points in $S$.
  • The $i$-th of the next $n$ lines contains two integers $a_i$ and $b_i$ — the coordinates of each point in $S$.

출력

For each test case:

  • Let $T=\{(c_1,d_1) ,(c_2,d_2) ,\dots ,(c_m,d_m)\}$ be a minimum-size good set of $S$.
  • In the first line of the test case, print an integer $m$ — the number of vectors in $T$.
  • In the $i$-th of the next $m$ lines, print two integers $c_i$ and $d_i$ — the coordinates of each vector.

If there are multiple solutions, print any of them.

It can be proved that, under the constraints of this problem, a good set of $S$ with size at most 10ドル\times n$ always exists.

제한

  • 1ドル\le Q\le 50,円 000$
  • The sum of $n$ over all test cases does not exceed 10ドル^5$.
  • 2ドル\le n\le 10^5$
  • $-10^8\le a_i,b_i\le 10^8$ (1ドル\le i\le n$)
  • $(a_i,b_i)\ne(a_j,b_j)$ (1ドル\le i<j\le n$)
  • $m\ge 0$
  • $-10^{18}\le c_i,d_i\le 10^{18}$ (1ドル\le i\le m$)
  • $(c_i,d_i)\ne(c_j,d_j)$ (1ドル\le i<j\le m$)

예제 입력 1

2
2
-30 30
-50 50
3
2 1
1 0
4 1

예제 출력 1

1
-10 10
2
1 0
1 1

노트

In the first test case, $T=\{(-10,10)\}$ is a minimum-size good set of $S=\{(-30,30) ,(-50,50)\}$.

We can take a sequence $((0,0) ,(-10,10) ,(-20,20) ,\underline{(-30,30)} ,(-40,40) ,\underline{(-50,50)})$. Here, the underlined points are in $S$.

In the second test case, $T=\{(1,0) ,(1,1)\}$ is a minimum-size good set of $S=\{(2,1) ,(1,0) ,(4,1)\}$.

We can take a sequence $((0,0) ,\underline{(1,0)} ,\underline{(2,1)} ,(3,1) ,\underline{(4,1)})$.

출처

University > KAIST > KAIST ICPC Mock Competition > 2024 KAIST 14th ICPC Mock Competition J번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /