Logo
(追記) (追記ここまで)

31817번 - Two Histograms 서브태스크다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 (추가 시간 없음) 1024 MB (추가 메모리 없음)56151225.000%

문제

당신에게 10ドル^6\times 10^6$ 크기의 정사각형 모양의 격자판 세 개가 주어진다. 각 칸은 $x$좌표와 $y$좌표로 번호가 매겨져 있다. $x$좌표는 맨 왼쪽에서부터 맨 오른쪽까지 1ドル$부터 10ドル^6$으로 매겨져 있고, $y$좌표는 맨 아래에서부터 맨 위까지 1ドル$에서 10ドル^6$으로 매겨져 있다. 당신은 각 칸을 검은색 혹은 흰색으로 칠해야 한다.

세 격자의 격자칸을 색칠하는 예시.

첫 번째 격자판은 아래에서부터 올라오는 히스토그램의 형태를 띄어야 한다. 즉, 어떤 격자칸이 검은색으로 칠해져 있다면, 그 아래의 칸도 검은색으로 칠해져 있어야 한다.

두 번째 격자판은 왼쪽에서부터 오른쪽으로 진행하는 히스토그램의 형태를 띄어야 한다. 즉, 어떤 격자칸이 검은색으로 칠해져 있다면, 그 왼쪽 칸도 검은색으로 칠해져 있어야 한다.

세 번째 격자판은 앞의 두 격자판을 이용해 색칠한다. 어떤 칸 $(x,y)$가 첫 두 격자판에서 모두 검은색으로 색칠되어 있다면, 세 번째 격자판의 칸 $(x,y)$ 역시 검은색으로 색칠한다. 그렇지 않다면, 해당 칸을 흰색으로 색칠한다. 이 세 번째 격자판이 최종 그림이 된다.

당신이 그린 그림을 $N$명이 심사위원에게 심사할 예정이다. 각 심사위원은 그림 내의 특정한 $K\times 1$ 직사각형 영역을 심사에 이용한다. $i$번째 심사위원이 이용하는 직사각형 영역은 $[x_i,x_i+K-1]\times[y_i , y_i]$이다. 각 심사위원들이 심사에 이용하는 직사각형 영역은 겹치지 않는다.

$i$번째 심사위원은 칸 $(x_i,y_i)$와 칸 $(x_i+K-1,y_i)$가 같은 색으로 칠해진 경우 불합격으로 판정한다. 두 칸의 색이 다른 경우에는 합격으로 판정하고, 칸 $(x_i,y_i)$가 흰색으로 칠해진 경우에 $a_i$점을, 검은색으로 칠해진 경우에 $b_i$점을 준다.

심사를 통과하기 위해서는 모든 심사위원에게 합격 판정을 받아야 한다. 이때 그림의 점수는 모든 심사위원들에게 받은 점수의 합이 된다. 심사를 통과하는 가능한 모든 그림에 대해서 받을 수 있는 점수의 최댓값을 구해 보자.

입력

첫 번째 줄에는 두 정수 $N$과 $K$가 공백으로 구분되어 주어진다.

다음 $N$개의 줄 중 $i$번째 줄에는 네 정수 $x_i,ドル $y_i,ドル $a_i,ドル $b_i$가 공백으로 구분되어 주어진다.

출력

심사를 통과하는 그림이 없다면, $-1$을 출력한다.

심사를 통과하는 그림이 있다면, 가능한 그림의 최대 점수를 출력한다.

제한

  • 1ドル\leq N\leq 3\times 10^5$
  • 2ドル\leq K\leq 10^6$
  • 1ドル\leq x_i\leq 10^6-K+1$ (1ドル\leq i\leq N$)
  • 1ドル\leq y_i\leq 10^6$ (1ドル\leq i\leq N$)
  • 1ドル\leq a_i,b_i\leq 10^9$ (1ドル\leq i\leq N$)
  • $N$개의 직사각형 영역 $[x_i,x_i+K-1]\times[y_i , y_i]$ (1ドル\leq i\leq N$)는 서로 겹치지 않는다.

서브태스크

번호배점제한
130

$K=2$; $N \leq 5,000円$

230

$K=2$

340

추가적인 제약 조건이 없다.

예제 입력 1

5 2
1 1 1 2
3 1 1 10
5 1 5 6
2 2 3 2
4 2 5 9

예제 출력 1

26

예제 입력 2

6 3
1 1 2 4
5 1 4 9
2 3 7 4
5 3 3 1
1 5 5 7
4 5 6 4

예제 출력 2

36

예제 입력 3

10 2
7 2 2 4
4 4 6 3
1 5 1 4
3 5 2 8
5 2 4 3
6 4 4 2
1 2 1 4
5 6 9 7
7 1 6 3
4 3 8 7

예제 출력 3

51

예제 입력 4

10 3
4 2 5 2
10 2 8 10
1 2 1 4
12 1 8 6
6 3 7 10
8 1 1 9
11 3 5 5
7 2 10 5
3 3 6 4
4 1 9 4

예제 출력 4

72

노트

$[x_l,x_r]\times[y_l , y_r]$ 직사각형 영역은 $x_l\le x\le x_r$이고 $y_l\le y\le y_r$인 영역을 의미한다.

W3sicHJvYmxlbV9pZCI6IjMxODE3IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiVHdvIEhpc3RvZ3JhbXMiLCJkZXNjcmlwdGlvbiI6IjxwPlx1YjJmOVx1YzJlMFx1YzVkMFx1YWM4YyAkMTBeNlxcdGltZXMgMTBeNiQgXHVkMDZjXHVhZTMwXHVjNzU4IFx1YzgxNVx1YzBhY1x1YWMwMVx1ZDYxNSBcdWJhYThcdWM1OTFcdWM3NTggXHVhY2E5XHVjNzkwXHVkMzEwIFx1YzEzOCBcdWFjMWNcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWFjMDEgXHVjZTc4XHVjNzQwICR4JFx1Yzg4Y1x1ZDQ1Y1x1YzY0MCAkeSRcdWM4OGNcdWQ0NWNcdWI4NWMgXHViYzg4XHVkNjM4XHVhYzAwIFx1YjllNFx1YWNhOFx1YzgzOCBcdWM3ODhcdWIyZTQuICR4JFx1Yzg4Y1x1ZDQ1Y1x1YjI5NCBcdWI5ZTggXHVjNjdjXHVjYWJkXHVjNWQwXHVjMTFjXHViZDgwXHVkMTMwIFx1YjllOCBcdWM2MjRcdWI5NzhcdWNhYmRcdWFlNGNcdWM5YzAgJDEkXHViZDgwXHVkMTMwICQxMF42JFx1YzczY1x1Yjg1YyBcdWI5ZTRcdWFjYThcdWM4MzggXHVjNzg4XHVhY2UwLCAkeSRcdWM4OGNcdWQ0NWNcdWIyOTQgXHViOWU4IFx1YzU0NFx1Yjc5OFx1YzVkMFx1YzExY1x1YmQ4MFx1ZDEzMCBcdWI5ZTggXHVjNzA0XHVhZTRjXHVjOWMwICQxJFx1YzVkMFx1YzExYyAkMTBeNiRcdWM3M2NcdWI4NWMgXHViOWU0XHVhY2E4XHVjODM4IFx1Yzc4OFx1YjJlNC4gXHViMmY5XHVjMmUwXHVjNzQwIFx1YWMwMSBcdWNlNzhcdWM3NDQgXHVhYzgwXHVjNzQwXHVjMGM5IFx1ZDYzOVx1Yzc0MCBcdWQ3NzBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9wPlxyXG5cclxuPHAgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXI7XCI+PGltZyBhbHQ9XCJcIiBzcmM9XCJodHRwczpcL1wvdXBsb2FkLmFjbWljcGMubmV0XC83NzE5OTc2Yy0zZmMxLTQzZDgtYmI3ZS0zYWY3Mzc0Y2I0NzdcLy1cL3ByZXZpZXdcL1wiIHN0eWxlPVwiaGVpZ2h0OiAyMjhweDsgd2lkdGg6IDcyMHB4O1wiIFwvPjxcL3A+XHJcblxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlcjtcIj5cdWMxMzggXHVhY2E5XHVjNzkwXHVjNzU4IFx1YWNhOVx1Yzc5MFx1Y2U3OFx1Yzc0NCBcdWMwYzlcdWNlNjBcdWQ1NThcdWIyOTQgXHVjNjA4XHVjMmRjLjxcL3A+XHJcblxyXG48cD5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YWNhOVx1Yzc5MFx1ZDMxMFx1Yzc0MCBcdWM1NDRcdWI3OThcdWM1ZDBcdWMxMWNcdWJkODBcdWQxMzAgXHVjNjJjXHViNzdjXHVjNjI0XHViMjk0IFx1ZDc4OFx1YzJhNFx1ZDFhMFx1YWRmOFx1YjdhOFx1Yzc1OCBcdWQ2MTVcdWQwZGNcdWI5N2MgXHViNzQ0XHVjNWI0XHVjNTdjIFx1ZDU1Y1x1YjJlNC4gXHVjOTg5LCBcdWM1YjRcdWI1YTQgXHVhY2E5XHVjNzkwXHVjZTc4XHVjNzc0IFx1YWM4MFx1Yzc0MFx1YzBjOVx1YzczY1x1Yjg1YyBcdWNlNjBcdWQ1NzRcdWM4MzggXHVjNzg4XHViMmU0XHViYTc0LCBcdWFkZjggXHVjNTQ0XHViNzk4XHVjNzU4IFx1Y2U3OFx1YjNjNCBcdWFjODBcdWM3NDBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjODM4IFx1Yzc4OFx1YzViNFx1YzU3YyBcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjQ1MCBcdWJjODhcdWM5ZjggXHVhY2E5XHVjNzkwXHVkMzEwXHVjNzQwIFx1YzY3Y1x1Y2FiZFx1YzVkMFx1YzExY1x1YmQ4MFx1ZDEzMCBcdWM2MjRcdWI5NzhcdWNhYmRcdWM3M2NcdWI4NWMgXHVjOWM0XHVkNTg5XHVkNTU4XHViMjk0IFx1ZDc4OFx1YzJhNFx1ZDFhMFx1YWRmOFx1YjdhOFx1Yzc1OCBcdWQ2MTVcdWQwZGNcdWI5N2MgXHViNzQ0XHVjNWI0XHVjNTdjIFx1ZDU1Y1x1YjJlNC4gXHVjOTg5LCBcdWM1YjRcdWI1YTQgXHVhY2E5XHVjNzkwXHVjZTc4XHVjNzc0IFx1YWM4MFx1Yzc0MFx1YzBjOVx1YzczY1x1Yjg1YyBcdWNlNjBcdWQ1NzRcdWM4MzggXHVjNzg4XHViMmU0XHViYTc0LCBcdWFkZjggXHVjNjdjXHVjYWJkIFx1Y2U3OFx1YjNjNCBcdWFjODBcdWM3NDBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjODM4IFx1Yzc4OFx1YzViNFx1YzU3YyBcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YzEzOCBcdWJjODhcdWM5ZjggXHVhY2E5XHVjNzkwXHVkMzEwXHVjNzQwIFx1YzU1ZVx1Yzc1OCBcdWI0NTAgXHVhY2E5XHVjNzkwXHVkMzEwXHVjNzQ0IFx1Yzc3NFx1YzZhOVx1ZDU3NCBcdWMwYzlcdWNlNjBcdWQ1NWNcdWIyZTQuIFx1YzViNFx1YjVhNCBcdWNlNzggJCh4LHkpJFx1YWMwMCBcdWNjYWIgXHViNDUwIFx1YWNhOVx1Yzc5MFx1ZDMxMFx1YzVkMFx1YzExYyBcdWJhYThcdWI0NTAgXHVhYzgwXHVjNzQwXHVjMGM5XHVjNzNjXHViODVjIFx1YzBjOVx1Y2U2MFx1YjQxOFx1YzViNCBcdWM3ODhcdWIyZTRcdWJhNzQsIFx1YzEzOCBcdWJjODhcdWM5ZjggXHVhY2E5XHVjNzkwXHVkMzEwXHVjNzU4IFx1Y2U3OCAkKHgseSkkIFx1YzVlZFx1YzJkYyBcdWFjODBcdWM3NDBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjMGM5XHVjZTYwXHVkNTVjXHViMmU0LiBcdWFkZjhcdWI4MDdcdWM5YzAgXHVjNTRhXHViMmU0XHViYTc0LCBcdWQ1NzRcdWIyZjkgXHVjZTc4XHVjNzQ0IFx1ZDc3MFx1YzBjOVx1YzczY1x1Yjg1YyBcdWMwYzlcdWNlNjBcdWQ1NWNcdWIyZTQuIFx1Yzc3NCBcdWMxMzggXHViYzg4XHVjOWY4IFx1YWNhOVx1Yzc5MFx1ZDMxMFx1Yzc3NCBcdWNkNWNcdWM4ODUgXHVhZGY4XHViOWJjXHVjNzc0IFx1YjQxY1x1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViMmY5XHVjMmUwXHVjNzc0IFx1YWRmOFx1YjliMCBcdWFkZjhcdWI5YmNcdWM3NDQgJE4kXHViYTg1XHVjNzc0IFx1YzJlY1x1YzBhY1x1YzcwNFx1YzZkMFx1YzVkMFx1YWM4YyBcdWMyZWNcdWMwYWNcdWQ1NjAgXHVjNjA4XHVjODE1XHVjNzc0XHViMmU0LiBcdWFjMDEgXHVjMmVjXHVjMGFjXHVjNzA0XHVjNmQwXHVjNzQwIFx1YWRmOFx1YjliYyBcdWIwYjRcdWM3NTggXHVkMmI5XHVjODE1XHVkNTVjICRLXFx0aW1lcyAxJCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTUgXHVjNjAxXHVjNWVkXHVjNzQ0IFx1YzJlY1x1YzBhY1x1YzVkMCBcdWM3NzRcdWM2YTlcdWQ1NWNcdWIyZTQuICRpJFx1YmM4OFx1YzlmOCBcdWMyZWNcdWMwYWNcdWM3MDRcdWM2ZDBcdWM3NzQgXHVjNzc0XHVjNmE5XHVkNTU4XHViMjk0IFx1YzljMVx1YzBhY1x1YWMwMVx1ZDYxNSBcdWM2MDFcdWM1ZWRcdWM3NDAgJFt4X2kseF9pK0stMV1cXHRpbWVzW3lfaSAsIHlfaV0kXHVjNzc0XHViMmU0LiA8c3Ryb25nPlx1YWMwMSBcdWMyZWNcdWMwYWNcdWM3MDRcdWM2ZDBcdWI0ZTRcdWM3NzQgXHVjMmVjXHVjMGFjXHVjNWQwIFx1Yzc3NFx1YzZhOVx1ZDU1OFx1YjI5NCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTUgXHVjNjAxXHVjNWVkXHVjNzQwIFx1YWNiOVx1Y2U1OFx1YzljMCBcdWM1NGFcdWIyOTRcdWIyZTQuPFwvc3Ryb25nPjxcL3A+XHJcblxyXG48cD4kaSRcdWJjODhcdWM5ZjggXHVjMmVjXHVjMGFjXHVjNzA0XHVjNmQwXHVjNzQwIFx1Y2U3OCAkKHhfaSx5X2kpJFx1YzY0MCBcdWNlNzggJCh4X2krSy0xLHlfaSkkXHVhYzAwIFx1YWMxOVx1Yzc0MCBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjOWM0IFx1YWNiZFx1YzZiMCBcdWJkODhcdWQ1NjlcdWFjYTlcdWM3M2NcdWI4NWMgXHVkMzEwXHVjODE1XHVkNTVjXHViMmU0LiBcdWI0NTAgXHVjZTc4XHVjNzU4IFx1YzBjOVx1Yzc3NCBcdWIyZTRcdWI5NzggXHVhY2JkXHVjNmIwXHVjNWQwXHViMjk0IFx1ZDU2OVx1YWNhOVx1YzczY1x1Yjg1YyBcdWQzMTBcdWM4MTVcdWQ1NThcdWFjZTAsIFx1Y2U3OCAkKHhfaSx5X2kpJFx1YWMwMCBcdWQ3NzBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjOWM0IFx1YWNiZFx1YzZiMFx1YzVkMCAkYV9pJFx1YzgxMFx1Yzc0NCwgXHVhYzgwXHVjNzQwXHVjMGM5XHVjNzNjXHViODVjIFx1Y2U2MFx1ZDU3NFx1YzljNCBcdWFjYmRcdWM2YjBcdWM1ZDAgJGJfaSRcdWM4MTBcdWM3NDQgXHVjOTAwXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWMyZWNcdWMwYWNcdWI5N2MgXHVkMWI1XHVhY2ZjXHVkNTU4XHVhZTMwIFx1YzcwNFx1ZDU3NFx1YzExY1x1YjI5NCBcdWJhYThcdWI0ZTAgXHVjMmVjXHVjMGFjXHVjNzA0XHVjNmQwXHVjNWQwXHVhYzhjIFx1ZDU2OVx1YWNhOSBcdWQzMTBcdWM4MTVcdWM3NDQgXHViYzFiXHVjNTQ0XHVjNTdjIFx1ZDU1Y1x1YjJlNC4gXHVjNzc0XHViNTRjIFx1YWRmOFx1YjliY1x1Yzc1OCBcdWM4MTBcdWMyMThcdWIyOTQgXHViYWE4XHViNGUwIFx1YzJlY1x1YzBhY1x1YzcwNFx1YzZkMFx1YjRlNFx1YzVkMFx1YWM4YyBcdWJjMWJcdWM3NDAgXHVjODEwXHVjMjE4XHVjNzU4IFx1ZDU2OVx1Yzc3NCBcdWI0MWNcdWIyZTQuIFx1YzJlY1x1YzBhY1x1Yjk3YyBcdWQxYjVcdWFjZmNcdWQ1NThcdWIyOTQgXHVhYzAwXHViMmE1XHVkNTVjIFx1YmFhOFx1YjRlMCBcdWFkZjhcdWI5YmNcdWM1ZDAgXHViMzAwXHVkNTc0XHVjMTFjIFx1YmMxYlx1Yzc0NCBcdWMyMTggXHVjNzg4XHViMjk0IFx1YzgxMFx1YzIxOFx1Yzc1OCBcdWNkNWNcdWIzMTNcdWFjMTJcdWM3NDQgXHVhZDZjXHVkNTc0IFx1YmNmNFx1Yzc5MC48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Y2NhYiBcdWJjODhcdWM5ZjggXHVjOTA0XHVjNWQwXHViMjk0IFx1YjQ1MCBcdWM4MTVcdWMyMTggJE4kXHVhY2ZjICRLJFx1YWMwMCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViMmU0XHVjNzRjICROJFx1YWMxY1x1Yzc1OCBcdWM5MDQgXHVjOTExICRpJFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDBcdWIyOTQgXHViMTI0IFx1YzgxNVx1YzIxOCAkeF9pJCwgJHlfaSQsICRhX2kkLCAkYl9pJFx1YWMwMCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWMyZWNcdWMwYWNcdWI5N2MgXHVkMWI1XHVhY2ZjXHVkNTU4XHViMjk0IFx1YWRmOFx1YjliY1x1Yzc3NCBcdWM1YzZcdWIyZTRcdWJhNzQsICQtMSRcdWM3NDQgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWMyZWNcdWMwYWNcdWI5N2MgXHVkMWI1XHVhY2ZjXHVkNTU4XHViMjk0IFx1YWRmOFx1YjliY1x1Yzc3NCBcdWM3ODhcdWIyZTRcdWJhNzQsIFx1YWMwMFx1YjJhNVx1ZDU1YyBcdWFkZjhcdWI5YmNcdWM3NTggXHVjZDVjXHViMzAwIFx1YzgxMFx1YzIxOFx1Yjk3YyBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IjxwPiRbeF9sLHhfcl1cXHRpbWVzW3lfbCAsIHlfcl0kIFx1YzljMVx1YzBhY1x1YWMwMVx1ZDYxNSBcdWM2MDFcdWM1ZWRcdWM3NDAgJHhfbFxcbGUgeFxcbGUgeF9yJFx1Yzc3NFx1YWNlMCAkeV9sXFxsZSB5XFxsZSB5X3IkXHVjNzc4IFx1YzYwMVx1YzVlZFx1Yzc0NCBcdWM3NThcdWJiZjhcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4iLCJsaW1pdCI6Ijx1bD5cclxuXHQ8bGk+JDFcXGxlcSBOXFxsZXEgM1xcdGltZXMgMTBeNSQ8XC9saT5cclxuXHQ8bGk+JDJcXGxlcSBLXFxsZXEgMTBeNiQ8XC9saT5cclxuXHQ8bGk+JDFcXGxlcSB4X2lcXGxlcSAxMF42LUsrMSQgKCQxXFxsZXEgaVxcbGVxIE4kKTxcL2xpPlxyXG5cdDxsaT4kMVxcbGVxIHlfaVxcbGVxIDEwXjYkICgkMVxcbGVxIGlcXGxlcSBOJCk8XC9saT5cclxuXHQ8bGk+JDFcXGxlcSBhX2ksYl9pXFxsZXEgMTBeOSQgKCQxXFxsZXEgaVxcbGVxIE4kKTxcL2xpPlxyXG5cdDxsaT4kTiRcdWFjMWNcdWM3NTggXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1IFx1YzYwMVx1YzVlZCAkW3hfaSx4X2krSy0xXVxcdGltZXNbeV9pICwgeV9pXSQgKCQxXFxsZXEgaVxcbGVxIE4kKVx1YjI5NCBcdWMxMWNcdWI4NWMgXHVhY2I5XHVjZTU4XHVjOWMwIFx1YzU0YVx1YjI5NFx1YjJlNC48XC9saT5cclxuPFwvdWw+XHJcbiIsInN1YnRhc2sxIjoiPHA+JEs9MiQ7ICROIFxcbGVxIDVcXCwwMDAkPFwvcD5cclxuIiwic3VidGFzazIiOiI8cD4kSz0yJDxcL3A+XHJcbiIsInN1YnRhc2szIjoiPHA+XHVjZDk0XHVhYzAwXHVjODAxXHVjNzc4IFx1YzgxY1x1YzU3ZCBcdWM4NzBcdWFjNzRcdWM3NzQgXHVjNWM2XHViMmU0LjxcL3A+XHJcbiJ9LHsicHJvYmxlbV9pZCI6IjMxODE3IiwicHJvYmxlbV9sYW5nIjoiMSIsInRpdGxlIjoiVHdvIEhpc3RvZ3JhbXMiLCJkZXNjcmlwdGlvbiI6IjxwPllvdSBhcmUgZ2l2ZW4gdGhyZWUgc3F1YXJlIGdyaWRzIHdpdGggc2l6ZSAkMTBeNlxcdGltZXMgMTBeNiQuIEVhY2ggY2VsbCBpcyBsYWJlbGVkIHdpdGggJHgkIGFuZCAkeSQgY29vcmRpbmF0ZXMuIFRoZSAkeCQgY29vcmRpbmF0ZXMgYXJlIG51bWJlcmVkIGZyb20gJDEkIHRvICQxMF42JCwgbGVmdCB0byByaWdodCwgYW5kIHRoZSAkeSQgY29vcmRpbmF0ZXMgYXJlIG51bWJlcmVkIGZyb20gJDEkIHRvICQxMF42JCwgYm90dG9tIHRvIHRvcC4gWW91IG11c3QgY29sb3IgZWFjaCBjZWxsIGJsYWNrIG9yIHdoaXRlLjxcL3A+XHJcblxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlcjtcIj48aW1nIGFsdD1cIlwiIHNyYz1cImh0dHBzOlwvXC91cGxvYWQuYWNtaWNwYy5uZXRcLzc3MTk5NzZjLTNmYzEtNDNkOC1iYjdlLTNhZjczNzRjYjQ3N1wvLVwvcHJldmlld1wvXCIgc3R5bGU9XCJoZWlnaHQ6IDIyOHB4OyB3aWR0aDogNzIwcHg7XCIgXC8+PFwvcD5cclxuXHJcbjxwIHN0eWxlPVwidGV4dC1hbGlnbjogY2VudGVyO1wiPkFuIGV4YW1wbGUgb2YgY29sb3JpbmcgdGhlIGNlbGxzIG9mIHRocmVlIGdyaWRzLjxcL3A+XHJcblxyXG48cD5UaGUgZmlyc3QgZ3JpZCBtdXN0IGhhdmUgdGhlIHNoYXBlIG9mIGEgaGlzdG9ncmFtIHJpc2luZyBmcm9tIHRoZSBib3R0b20uIEluIG90aGVyIHdvcmRzLCBpZiBhIGdyaWQgY2VsbCBpcyBjb2xvcmVkIGJsYWNrLCB0aGUgY2VsbCBiZWxvdyBtdXN0IGFsc28gYmUgY29sb3JlZCBibGFjay48XC9wPlxyXG5cclxuPHA+VGhlIHNlY29uZCBncmlkIG11c3QgaGF2ZSB0aGUgc2hhcGUgb2YgYSBoaXN0b2dyYW0gcHJvZ3Jlc3NpbmcgZnJvbSBsZWZ0IHRvIHJpZ2h0LiBJbiBvdGhlciB3b3JkcywgaWYgYSBncmlkIGNlbGwgaXMgY29sb3JlZCBibGFjaywgdGhlIGNlbGwgbGVmdCB0byBpdCBtdXN0IGFsc28gYmUgY29sb3JlZCBibGFjay48XC9wPlxyXG5cclxuPHA+VGhlIHRoaXJkIGdyaWQgaXMgY29sb3JlZCB1c2luZyB0aGUgZmlyc3QgdHdvIGdyaWRzLiBJZiBhIGNlbGwgJCh4LHkpJCBpcyBjb2xvcmVkIGJsYWNrIGluIGJvdGggb2YgdGhlIGZpcnN0IHR3byBncmlkcywgdGhlbiBjZWxsICQoeCx5KSQgaW4gdGhlIHRoaXJkIGdyaWQgaXMgYWxzbyBjb2xvcmVkIGJsYWNrLiBPdGhlcndpc2UsIHRoZSBjZWxsIGlzIGNvbG9yZWQgd2hpdGUuIFRoaXMgdGhpcmQgZ3JpZCBiZWNvbWVzIHlvdXIgZmluYWwgcGFpbnRpbmcuPFwvcD5cclxuXHJcbjxwPlRoZSBwYWludGluZyBpcyBqdWRnZWQgYnkgJE4kIGp1ZGdlcy4gRWFjaCBqdWRnZSB3aWxsIHVzZSBhIHNwZWNpZmljIHJlY3Rhbmd1bGFyIGFyZWEgb2Ygc2l6ZSAkS1xcdGltZXMgMSQgZm9yIGV2YWx1YXRpb24uIFRoZSByZWN0YW5ndWxhciBhcmVhIHVzZWQgYnkgdGhlICRpJC10aCBqdWRnZSBpcyAkW3hfaSx4X2krSy0xXVxcdGltZXNbeV9pICwgeV9pXSQuIDxzdHJvbmc+VGhlIHJlY3Rhbmd1bGFyIGFyZWFzIGRvIG5vdCBvdmVybGFwIGVhY2ggb3RoZXIuPFwvc3Ryb25nPjxcL3A+XHJcblxyXG48cD5UaGUgJGkkLXRoIGp1ZGdlIHdpbGwgcmVqZWN0IHRoZSBwYWludGluZyBpZiBjZWxscyAkKHhfaSx5X2kpJCBhbmQgJCh4X2krSy0xLHlfaSkkIGFyZSB0aGUgc2FtZSBjb2xvci4gSWYgdGhlIGNvbG9ycyBhcmUgZGlmZmVyZW50LCB0aGUganVkZ2Ugd2lsbCBhcHByb3ZlIHRoZSBwYWludGluZy4gVGhlIGp1ZGdlIHdpbGwgYXdhcmQgJGFfaSQgcG9pbnRzIGlmIGNlbGwgJCh4X2kseV9pKSQgaXMgd2hpdGUgYW5kICRiX2kkIHBvaW50cyBpZiBpdCBpcyBibGFjay48XC9wPlxyXG5cclxuPHA+VGhlIHBhaW50aW5nIG11c3QgYmUgYXBwcm92ZWQgYnkgYWxsIGp1ZGdlcyB0byBwYXNzIHRoZSBldmFsdWF0aW9uLiBUaGUgcGFpbnRpbmcmcnNxdW87cyBzY29yZSBpcyB0aGUgc3VtIG9mIHBvaW50cyBhd2FyZGVkIGJ5IGFsbCBqdWRnZXMuIEZpbmQgdGhlIG1heGltdW0gcG9zc2libGUgc2NvcmUgdGhhdCBjYW4gYmUgYWNoaWV2ZWQsIGNvbnNpZGVyaW5nIGFsbCBwb3NzaWJsZSBwYWludGluZ3MgdGhhdCBjYW4gcGFzcyB0aGUgZXZhbHVhdGlvbi48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlRoZSBmaXJzdCBsaW5lIGNvbnRhaW5zIHR3byBpbnRlZ2VycyAkTiQgYW5kICRLJCBzZXBhcmF0ZWQgYnkgYSBzcGFjZS48XC9wPlxyXG5cclxuPHA+VGhlICRpJC10aCBvZiB0aGUgbmV4dCAkTiQgbGluZXMgY29udGFpbnMgZm91ciBpbnRlZ2VycyAkeF9pJCwgJHlfaSQsICRhX2kkLCAkYl9pJCBzZXBhcmF0ZWQgYnkgYSBzcGFjZS48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5JZiB0aGVyZSBpcyBubyBwb3NzaWJsZSBwYWludGluZyB0aGF0IGNhbiBwYXNzIHRoZSBldmFsdWF0aW9uLCBwcmludCAkLTEkLjxcL3A+XHJcblxyXG48cD5PdGhlcndpc2UsIHByaW50IHRoZSBtYXhpbXVtIHNjb3JlIHRoYXQgeW91ciBwYWludGluZyBjYW4gZ2V0LjxcL3A+XHJcbiIsImhpbnQiOiI8cD5BIHJlY3Rhbmd1bGFyIGFyZWEgJFt4X2wseF9yXVxcdGltZXNbeV9sICwgeV9yXSQgcmVmZXJzIHRvIHRoZSBhcmVhIHdoZXJlICR4X2xcXGxlIHhcXGxlIHhfciQgYW5kICR5X2xcXGxlIHlcXGxlIHlfciQuPFwvcD5cclxuIiwib3JpZ2luYWwiOiIwIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIiwibGltaXQiOiI8dWw+XHJcblx0PGxpPiQxXFxsZXEgTlxcbGVxIDNcXHRpbWVzIDEwXjUkPFwvbGk+XHJcblx0PGxpPiQyXFxsZXEgS1xcbGVxIDEwXjYkPFwvbGk+XHJcblx0PGxpPiQxXFxsZXEgeF9pXFxsZXEgMTBeNi1LKzEkICgkMVxcbGVxIGlcXGxlcSBOJCk8XC9saT5cclxuXHQ8bGk+JDFcXGxlcSB5X2lcXGxlcSAxMF42JCAoJDFcXGxlcSBpXFxsZXEgTiQpPFwvbGk+XHJcblx0PGxpPiQxXFxsZXEgYV9pLGJfaVxcbGVxIDEwXjkkICgkMVxcbGVxIGlcXGxlcSBOJCk8XC9saT5cclxuXHQ8bGk+VGhlICROJCByZWN0YW5ndWxhciBhcmVhcyAkW3hfaSx4X2krSy0xXVxcdGltZXNbeV9pICwgeV9pXSQgKCQxXFxsZXEgaVxcbGVxIE4kKSBkbyBub3Qgb3ZlcmxhcC48XC9saT5cclxuPFwvdWw+XHJcbiIsInN1YnRhc2sxIjoiPHA+JEs9MiQ7ICROIFxcbGVxIDVcXCwwMDAkPFwvcD5cclxuIiwic3VidGFzazIiOiI8cD4kSz0yJDxcL3A+XHJcbiIsInN1YnRhc2szIjoiPHA+Tm8gYWRkaXRpb25hbCBjb25zdHJhaW50cy48XC9wPlxyXG4ifV0=

출처

University > KAIST > KAIST RUN Spring Contest > 2024 KAIST RUN Spring Contest E번

채점 및 기타 정보

  • 예제는 채점하지 않는다.
(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /