문제
$N$개의 양의 정수로 이루어진 수열 $A$가 주어진다. 달구는 이 수열에서 수를 하나 골라 2ドル$를 곱하는 작업을 원하는 만큼 수행할 수 있다.
달구가 모든 작업을 수행한 뒤, 배열에서 가장 많이 등장하는 수를 $k$라 하자. 가장 많이 등장하는 수가 여러 개라면 그중 가장 큰 수를 $k$라 한다. $k$의 등장 횟수로 가능한 최댓값을 구해보자.
출력
작업을 원하는 만큼 수행한 뒤, 배열에서 가장 많이 등장하는 수의 가능한 최대 등장 횟수를 출력한다.
W3sicHJvYmxlbV9pZCI6IjMxNzE4IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiRG91YmxlIFVwIiwiZGVzY3JpcHRpb24iOiI8cD4kTiRcdWFjMWNcdWM3NTggXHVjNTkxXHVjNzU4IFx1YzgxNVx1YzIxOFx1Yjg1YyBcdWM3NzRcdWI4ZThcdWM1YjRcdWM5YzQgXHVjMjE4XHVjNWY0ICRBJFx1YWMwMCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1YjJlY1x1YWQ2Y1x1YjI5NCBcdWM3NzQgXHVjMjE4XHVjNWY0XHVjNWQwXHVjMTFjIFx1YzIxOFx1Yjk3YyBcdWQ1NThcdWIwOTggXHVhY2U4XHViNzdjICQyJFx1Yjk3YyBcdWFjZjFcdWQ1NThcdWIyOTQgXHVjNzkxXHVjNWM1XHVjNzQ0IFx1YzZkMFx1ZDU1OFx1YjI5NCBcdWI5Y2NcdWQwN2MgXHVjMjE4XHVkNTg5XHVkNTYwIFx1YzIxOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjJlY1x1YWQ2Y1x1YWMwMCBcdWJhYThcdWI0ZTAgXHVjNzkxXHVjNWM1XHVjNzQ0IFx1YzIxOFx1ZDU4OVx1ZDU1YyBcdWI0YTQsIFx1YmMzMFx1YzVmNFx1YzVkMFx1YzExYyA8c3Ryb25nPlx1YWMwMFx1YzdhNSBcdWI5Y2VcdWM3NzQ8XC9zdHJvbmc+IFx1YjRmMVx1YzdhNVx1ZDU1OFx1YjI5NCBcdWMyMThcdWI5N2MgJGskXHViNzdjIFx1ZDU1OFx1Yzc5MC4gXHVhYzAwXHVjN2E1IFx1YjljZVx1Yzc3NCBcdWI0ZjFcdWM3YTVcdWQ1NThcdWIyOTQgXHVjMjE4XHVhYzAwIFx1YzVlY1x1YjdlYyBcdWFjMWNcdWI3N2NcdWJhNzQgXHVhZGY4XHVjOTExIFx1YWMwMFx1YzdhNSBcdWQwNzAgXHVjMjE4XHViOTdjICRrJFx1Yjc3YyBcdWQ1NWNcdWIyZTQuICRrJFx1Yzc1OCBcdWI0ZjFcdWM3YTUgXHVkNjlmXHVjMjE4XHViODVjIFx1YWMwMFx1YjJhNVx1ZDU1YyBcdWNkNWNcdWIzMTNcdWFjMTJcdWM3NDQgXHVhZDZjXHVkNTc0XHViY2Y0XHVjNzkwLjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCBcdWMyMThcdWM1ZjRcdWM3NTggXHVhZTM4XHVjNzc0ICROJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuICQoMSBcXGxlIE4gXFxsZSAyMDBcXCAwMDApJDxcL3A+XHJcblxyXG48cD5cdWI0NThcdWM5ZjggXHVjOTA0XHVjNWQwICROJFx1YWMxY1x1Yzc1OCBcdWM1OTFcdWM3NTggXHVjODE1XHVjMjE4ICRBXzEsIEFfMiwgXFxjZG90cywgQV9OJFx1Yzc3NCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gJCgxIFxcbGUgQV9pIFxcbGUgMTBeOSkkPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVjNzkxXHVjNWM1XHVjNzQ0IFx1YzZkMFx1ZDU1OFx1YjI5NCBcdWI5Y2NcdWQwN2MgXHVjMjE4XHVkNTg5XHVkNTVjIFx1YjRhNCwgXHViYzMwXHVjNWY0XHVjNWQwXHVjMTFjIDxzdHJvbmc+XHVhYzAwXHVjN2E1IFx1YjljZVx1Yzc3NCBcdWI0ZjFcdWM3YTVcdWQ1NThcdWIyOTQgXHVjMjE4PFwvc3Ryb25nPlx1Yzc1OCBcdWFjMDBcdWIyYTVcdWQ1NWMgPHN0cm9uZz5cdWNkNWNcdWIzMDAgXHViNGYxXHVjN2E1IFx1ZDY5Zlx1YzIxODxcL3N0cm9uZz5cdWI5N2MgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LiA8XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4ifSx7InByb2JsZW1faWQiOiIzMTcxOCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkRvdWJsZSBVcCIsImRlc2NyaXB0aW9uIjoiPHA+VGhlcmUgaXMgYSBzZXF1ZW5jZSAkQSQgY29uc2lzdGluZyBvZiAkTiQgcG9zaXRpdmUgaW50ZWdlcnMuJm5ic3A7RGFsZ29vIGNhbiBjaG9vc2UgYSBudW1iZXIgZnJvbSB0aGlzIHNlcXVlbmNlIGFuZCBtdWx0aXBseSBpdCBieSAkMiQmbmJzcDthcyBtYW55IHRpbWVzIGFzIGhlIHdhbnRzLjxcL3A+XHJcblxyXG48cD5BZnRlciBEYWxnb28gcGVyZm9ybXMgYWxsIG9wZXJhdGlvbnMsIGxldCAkayQgYmUgdGhlIG51bWJlciBpbiB0aGUgc2VxdWVuY2UgdGhhdCBhcHBlYXJzIDxzdHJvbmc+bW9zdCBmcmVxdWVudGx5PFwvc3Ryb25nPi4gSWYgdGhlcmUgYXJlIG11bHRpcGxlIG51bWJlcnMgdGhhdCBhcHBlYXIgbW9zdCBmcmVxdWVudGx5LCAkayQgaXMgZGVmaW5lZCBhcyB0aGUgbGFyZ2VzdCBhbW9uZyB0aGVtLiBGaW5kIHRoZSBtYXhpbXVtIHBvc3NpYmxlIGZyZXF1ZW5jeSBvZiAkayQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBvZiBpbnB1dCBjb250YWlucyZuYnNwOyROJCwgaW5kaWNhdGluZyB0aGUgbGVuZ3RoIG9mIHRoZSBzZXF1ZW5jZS4mbmJzcDskKDEgXFxsZSBOIFxcbGUgMjAwXFwgMDAwKSQ8XC9wPlxyXG5cclxuPHA+VGhlIHNlY29uZCBsaW5lIGNvbnRhaW5zICROJCZuYnNwO3NwYWNlLXNlcGFyYXRlZCBwb3NpdGl2ZSBpbnRlZ2VycyZuYnNwOyRBXzEsIEFfMiwgXFxjZG90cyxBX04kLiZuYnNwOyQoMSBcXGxlIEFfaSBcXGxlIDEwXjkpJDxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPk91dHB1dCB0aGUgbWF4aW11bSBwb3NzaWJsZSBmcmVxdWVuY3kgb2YgJGskLjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjAiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IkVuZ2xpc2gifV0=