문제
JavaScript에서 $+, -$은 수에 대해서는 일반적인 의미의 덧셈 뺄셈의 의미를 가지고 있습니다. 하지만 문자열에 대해서 $+$는 두 문자열을 이어붙이라는 의미이고, $-$는 양쪽 문자열을 수로 해석한 이후에 빼라는 의미입니다.
$A, B, C$를 각각 수와 문자열로 생각했을 때 $A+B-C$를 출력하세요.
출력
첫 줄에는 $A, B, C$를 수로 생각했을 때, $A+B-C$를 출력하세요.
둘째 줄에는 $A, B, C$를 문자열로 생각했을 때, $A+B-C$를 출력하세요.
$A, B, C$를 수로 생각했을 때는, 3ドル+4-5 = 7 - 5 = 2$입니다.
$A, B, C$를 문자열로 생각했을 때는 $\texttt{`}3\texttt{'}+\texttt{`}4\texttt{'}-\texttt{`}5\texttt{'} = \texttt{`}34\texttt{'} - \texttt{`}5\texttt{'} = 29$입니다.
노트
$A+B-C$는 수와 문자열 모두에서 $+$를 먼저 계산 한 이후 $-$를 계산합니다.
W3sicHJvYmxlbV9pZCI6IjMxNDAzIiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiJEEgKyBCIC0gQyQiLCJkZXNjcmlwdGlvbiI6IjxwPkphdmFTY3JpcHRcdWM1ZDBcdWMxMWMgJCssIC0kXHVjNzQwIFx1YzIxOFx1YzVkMCBcdWIzMDBcdWQ1NzRcdWMxMWNcdWIyOTQgXHVjNzdjXHViYzE4XHVjODAxXHVjNzc4IFx1Yzc1OFx1YmJmOFx1Yzc1OCBcdWIzNjdcdWMxNDggXHViZTg0XHVjMTQ4XHVjNzU4IFx1Yzc1OFx1YmJmOFx1Yjk3YyBcdWFjMDBcdWM5YzBcdWFjZTAgXHVjNzg4XHVjMmI1XHViMmM4XHViMmU0LiBcdWQ1NThcdWM5YzBcdWI5Y2MgXHViYjM4XHVjNzkwXHVjNWY0XHVjNWQwIFx1YjMwMFx1ZDU3NFx1YzExYyAkKyRcdWIyOTQgXHViNDUwIFx1YmIzOFx1Yzc5MFx1YzVmNFx1Yzc0NCBcdWM3NzRcdWM1YjRcdWJkOTlcdWM3NzRcdWI3N2NcdWIyOTQgXHVjNzU4XHViYmY4XHVjNzc0XHVhY2UwLCAkLSRcdWIyOTQgXHVjNTkxXHVjYWJkIFx1YmIzOFx1Yzc5MFx1YzVmNFx1Yzc0NCBcdWMyMThcdWI4NWMgXHVkNTc0XHVjMTFkXHVkNTVjIFx1Yzc3NFx1ZDZjNFx1YzVkMCBcdWJlN2NcdWI3N2NcdWIyOTQgXHVjNzU4XHViYmY4XHVjNzg1XHViMmM4XHViMmU0LjxcL3A+XHJcblxyXG48cD4kQSwgQiwgQyRcdWI5N2MgXHVhYzAxXHVhYzAxIFx1YzIxOFx1YzY0MCBcdWJiMzhcdWM3OTBcdWM1ZjRcdWI4NWMgXHVjMGRkXHVhYzAxXHVkNTg4XHVjNzQ0IFx1YjU0YyAkQStCLUMkXHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU1OFx1YzEzOFx1YzY5NC48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Y2NhYiBcdWM5MDRcdWM1ZDBcdWIyOTQgXHVjODE1XHVjMjE4ICRBJFx1YWMwMCBcdWM4ZmNcdWM1YjRcdWM5ZDFcdWIyYzhcdWIyZTQuICQoMSBcXGxlIEEgXFxsZSAxXFwsMDAwKSQ8XC9wPlxyXG5cclxuPHA+XHViNDU4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWM4MTVcdWMyMTggJEIkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzlkMVx1YjJjOFx1YjJlNC4gJCgxIFxcbGUgQiBcXGxlIDFcXCwwMDApJDxcL3A+XHJcblxyXG48cD5cdWMxNGJcdWM5ZjggXHVjOTA0XHVjNWQwXHViMjk0IFx1YzgxNVx1YzIxOCAkQyRcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWQxXHViMmM4XHViMmU0LiAkKDEgXFxsZSBDIFxcbGUgMVxcLDAwMCkkPFwvcD5cclxuXHJcbjxwPlx1YzhmY1x1YzViNFx1YzljMFx1YjI5NCBcdWJhYThcdWI0ZTAgXHVjMjE4XHViMjk0ICQwJFx1YzczY1x1Yjg1YyBcdWMyZGNcdWM3OTFcdWQ1NThcdWM5YzAgXHVjNTRhXHViMjk0IFx1YzU5MVx1Yzc1OCBcdWM4MTVcdWMyMThcdWM3ODVcdWIyYzhcdWIyZTQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVjY2FiIFx1YzkwNFx1YzVkMFx1YjI5NCAkQSwgQiwgQyRcdWI5N2MgXHVjMjE4XHViODVjIFx1YzBkZFx1YWMwMVx1ZDU4OFx1Yzc0NCBcdWI1NGMsICRBK0ItQyRcdWI5N2MgXHVjZDljXHViODI1XHVkNTU4XHVjMTM4XHVjNjk0LjxcL3A+XHJcblxyXG48cD5cdWI0NThcdWM5ZjggXHVjOTA0XHVjNWQwXHViMjk0ICRBLCBCLCBDJFx1Yjk3YyBcdWJiMzhcdWM3OTBcdWM1ZjRcdWI4NWMgXHVjMGRkXHVhYzAxXHVkNTg4XHVjNzQ0IFx1YjU0YywgJEErQi1DJFx1Yjk3YyBcdWNkOWNcdWI4MjVcdWQ1NThcdWMxMzhcdWM2OTQuPFwvcD5cclxuIiwiaGludCI6IjxwPiRBK0ItQyRcdWIyOTQgXHVjMjE4XHVjNjQwIFx1YmIzOFx1Yzc5MFx1YzVmNCBcdWJhYThcdWI0NTBcdWM1ZDBcdWMxMWMgJCskXHViOTdjIFx1YmEzY1x1YzgwMCBcdWFjYzRcdWMwYjAgXHVkNTVjIFx1Yzc3NFx1ZDZjNCAkLSRcdWI5N2MgXHVhY2M0XHVjMGIwXHVkNTY5XHViMmM4XHViMmU0LjxcL3A+XHJcbiIsIm9yaWdpbmFsIjoiMSIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiS29yZWFuIiwic2FtcGxlX2V4cGxhaW5fMSI6IjxwPiRBLCBCLCBDJFx1Yjk3YyBcdWMyMThcdWI4NWMgXHVjMGRkXHVhYzAxXHVkNTg4XHVjNzQ0IFx1YjU0Y1x1YjI5NCwgJDMrNC01ID0gNyAtIDUgPSAyJFx1Yzc4NVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+JEEsIEIsIEMkXHViOTdjIFx1YmIzOFx1Yzc5MFx1YzVmNFx1Yjg1YyBcdWMwZGRcdWFjMDFcdWQ1ODhcdWM3NDQgXHViNTRjXHViMjk0ICRcXHRleHR0dHtgfTNcXHRleHR0dHsmIzM5O30rXFx0ZXh0dHR7YH00XFx0ZXh0dHR7JiMzOTt9LVxcdGV4dHR0e2B9NVxcdGV4dHR0eyYjMzk7fSA9IFxcdGV4dHR0e2B9MzRcXHRleHR0dHsmIzM5O30gLSBcXHRleHR0dHtgfTVcXHRleHR0dHsmIzM5O30gPSAyOSRcdWM3ODVcdWIyYzhcdWIyZTQuPFwvcD5cclxuIn0seyJwcm9ibGVtX2lkIjoiMzE0MDMiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiIkQSArIEIgLSBDJCIsImRlc2NyaXB0aW9uIjoiPHA+VXNlZCB3aXRoIG51bWJlcnMsIEphdmFTY3JpcHQgJCskIGFuZCAkLSQgb3BlcmF0b3JzIGFkZCBhbmQgc3VidHJhY3QgbnVtYmVycy4gRm9yIHN0cmluZ3MsIGhvd2V2ZXIsICQrJCBjb25jYXRlbmF0ZXMgdHdvIHN0cmluZ3Mgd2hpbGUgJC0kIGludGVycHJldHMgdGhlIHN0cmluZ3MgYXMgbnVtYmVycyBhbmQgdGhlbiBwZXJmb3JtcyBzdWJ0cmFjdGlvbiBvbiB0aGVtLjxcL3A+XHJcblxyXG48cD5HaXZlbiAkQSwgQiwgQyQsIHByaW50Jm5ic3A7ICRBK0ItQyQgb25jZSBmb3Igd2hlbiB0aGUgdmFsdWVzIGFyZSBpbnRlcnByZXRlZCBhcyBudW1iZXJzLCBhbmQgb25jZSBmb3Igd2hlbiB0aGUgdmFsdWVzIGFyZSBpbnRlcnByZXRlZCBhcyBzdHJpbmdzLjxcL3A+XHJcbiIsImlucHV0IjoiPHA+VGhlIGZpcnN0IGxpbmUgb2YgaW5wdXQgY29udGFpbnMgYW4gaW50ZWdlciAkQSQuICQoMSBcXGxlIEEgXFxsZSAxXFwsMDAwKSQ8XC9wPlxyXG5cclxuPHA+VGhlIHNlY29uZCBsaW5lIG9mIGlucHV0IGNvbnRhaW5zIGFuIGludGVnZXIgJEIkLiAkKDEgXFxsZSBCIFxcbGUgMVxcLDAwMCkkPFwvcD5cclxuXHJcbjxwPlRoZSB0aGlyZCBsaW5lIG9mIGlucHV0IGNvbnRhaW5zIGFuIGludGVnZXIgJEMkLiAkKDEgXFxsZSBDIFxcbGUgMVxcLDAwMCkkPFwvcD5cclxuXHJcbjxwPkFsbCBudW1iZXJzIGdpdmVuIGluIHRoZSBpbnB1dCBhcmUgcG9zaXRpdmUgaW50ZWdlcnMgd2l0aCBubyBsZWFkaW5nICQwJC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBvZiBvdXRwdXQgc2hvdWxkIGNvbnRhaW4gJEErQi1DJCB3aGVuICRBLCBCLCBDJCBhcmUgaW50ZXJwcmV0ZWQgYXMgbnVtYmVycy48XC9wPlxyXG5cclxuPHA+VGhlIHNlY29uZCBsaW5lIG9mIG91dHB1dCBzaG91bGQgY29udGFpbiAkQStCLUMkIHdoZW4gJEEsIEIsIEMkIGFyZSBpbnRlcnByZXRlZCBhcyBzdHJpbmdzLjxcL3A+XHJcbiIsImhpbnQiOiI8cD5Gb3IgYm90aCBudW1iZXJzIGFuZCBzdHJpbmdzLCAkQStCLUMkIGZpcnN0IGNhbGN1bGF0ZXMgJCskIGFuZCB0aGVuIGNhbGN1bGF0ZXMgJC0kLjxcL3A+XHJcbiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCIsInNhbXBsZV9leHBsYWluXzEiOiI8cD5XaGVuICRBLCBCLCBDJCBhcmUgaW50ZXJwcmV0ZWQgYXMgbnVtYmVycywgJDMrNC01ID0gNyAtIDUgPSAyJC48XC9wPlxyXG5cclxuPHA+V2hlbiAkQSwgQiwgQyQgYXJlIGludGVycHJldGVkIGFzIHN0cmluZ3MsICRcXHRleHR0dHtgfTNcXHRleHR0dHsmIzM5O30rXFx0ZXh0dHR7YH00XFx0ZXh0dHR7JiMzOTt9LVxcdGV4dHR0e2B9NVxcdGV4dHR0eyYjMzk7fSA9IFxcdGV4dHR0e2B9MzRcXHRleHR0dHsmIzM5O30gLSBcXHRleHR0dHtgfTVcXHRleHR0dHsmIzM5O30gPSAyOSQuPFwvcD5cclxuIn1d