Logo
(追記) (追記ここまで)

31352번 - Random Spanning Tree 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 1024 MB117555.556%

문제

Yuuka lives in Moe Country. The road system in Moe Country is a connected graph $G$. Each edge has a random (real) length, which is uniformly random in $[0, 1]$.

Now Yuuka is eager to know the expectation of minimum spanning tree of $G$.

입력

The first line contains 2ドル$ integers $n, m,ドル which denotes the number of vertices and edges of $G,ドル respectively (2ドル \leq n \leq 8, n - 1 \leq m \leq \frac{n(n - 1)}{2}$).

The vertices in $G$ are conveniently labeled by 1,ドル 2, \dots, n$.

Each of the following $m$ lines contains 2ドル$ integers $a_i, b_i,ドル which denotes an edge between vertices $a_i$ and $b_i$ (1ドル \leq a_i, b_i \leq n$).

It is guaranteed that the graph $G$ is connected, without self loops and parallel edges.

출력

A single fraction $p/q$ denotes the expectation.

제한

예제 입력 1

3 2
1 2
2 3

예제 출력 1

1/1

예제 입력 2

3 3
1 2
2 3
3 1

예제 출력 2

3/4

힌트

출처

Contest > Open Cup > 2014/2015 Season > Stage 10: Grand Prix of China G번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /