| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 1 초 | 1024 MB | 109 | 55 | 49 | 51.579% |
You are given 2ドルn$ pairs $(a_i, b_i)$ of integers. Consider a complete graph on 2ドルn$ vertices and define the weight of the edge $(ij)$ to be $w_{ij} = max(|a_i-a_j|, |a_i-b_j|, |b_i-a_j|, |b_i-b_j|)$.
Determine the maximum weight of the matching in this graph.
In other words, consider all ways to select $n$ edges of this graph such that no two chosen edges have a common endpoint. What is the maximum possible total weight of these edges?
The first line of the input contains a single integer $n$ (1ドル \le n \le 10^5$).
The $i$-th of the next 2ドルn$ lines contain two integers $a_i$ and $b_i$ (0ドル \le a_i, b_i \le 10^9$).
Print a single integer --- the maximum weight of the matching in this graph.
2 0 10 7 7 9 4 2 15
18
Adjacency matrix: $\begin{matrix}0 & 7 & 9 & 15 \\ 7 & 0 & 3 & 8 \\ 9 & 3 & 0 & 11 \\ 15 & 8 & 11 & 0 \end{matrix}$