Logo
(追記) (追記ここまで)

30861번 - Special Numbers 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1.5 초 2048 MB5011749826.415%

문제

Number theorist Dr. J is attracted by the beauty of numbers. When we are given a natural number $a = a_1a_2 \cdots a_n$ of $n$ digits and a natural number $k,ドル $a$ is called $k$-special if the product of all the digits of $a,ドル i.e. $a_1 \cdot a_2 \cdot a_3 \cdots a_n$ is divisible by $k$. Note that the number 0ドル$ is always divisible by a natural number.

For example, if $a = 2349$ and $k = 12,ドル then the product of all the digits of $a,ドル 2ドル \cdot 3 \cdot 4 \cdot 9 = 216$ is divisible by $k = 12,ドル so the number 2349ドル$ is 12ドル$-special. If $a = 2349$ and $k = 16,ドル then the product of all the digits of $a,ドル 2ドル \cdot 3 \cdot 4 \cdot 9 = 216$ is not divisible by $k = 16,ドル so the number 2349ドル$ is not 16ドル$-special.

Given three natural numbers $k,ドル $L,ドル and $R,ドル write a program to output $z \bmod (10^9 + 7)$ where $z$ is the number of $k$- special numbers among numbers in the range $[L, R]$.

입력

Your program is to read from standard input. The input has one line containing three integers, $k,ドル $L,ドル and $R$ (1ドル ≤ k ≤ 10^{17},ドル 1ドル ≤ L ≤ R ≤ 10^{20}$).

출력

Your program is to write to standard output. Print exactly one line. The line should contain $z \bmod (10^9 + 7)$ where $z$ is the number of $k$-special numbers among the numbers in the range $[L, R],ドル where both $L$ and $R$ are inclusive in the range.

제한

예제 입력 1

5 1 20

예제 출력 1

4

예제 입력 2

5 50 100

예제 출력 2

19

예제 입력 3

15 11 19

예제 출력 3

0

힌트

출처

ICPC > Regionals > Asia Pacific > Korea > Asia Regional - Seoul 2023 J번

Camp > Petrozavodsk Programming Camp > Winter 2024 > Day 6: K-ontest B번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /