Logo
(追記) (追記ここまで)

30806번 - 교차 집합 크기 합 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
4 초 1024 MB50220112734.605%

문제

$N$개의 집합 $S_1, S_2, \cdots, S_N$이 주어집니다.

$S_1, S_2, \cdots, S_N$ 중 $k$개를 고른 이후, 고른 집합들의 교집합의 크기를 생각합시다. $a_k$는 집합을 고르는 가능한 모든 ${N \choose k}$가지의 선택 방법 모두에 대해 교집합의 크기를 더한 값입니다. 수식으로는 다음과 같이 표현할 수 있습니다:

$$a_{k} := \sum_{\substack{\tau \subseteq \{1, 2, \cdots, N\} \\|\tau|=k}} \left|\bigcap_{i \in \tau} S_{i}\right|.$$

모든 $k=1, 2, \cdots, N$에 대해, $a_{k}$를 998ドル,244円,353円$ $(=119 \times 2^{23}+1)$으로 나눈 나머지를 구하세요. 998ドル,244円,353円$은 소수입니다.

입력

첫 줄에 정수 $N$이 주어집니다. (1ドル\leq N\leq 1,円 000,円 000$)

다음 $N$개의 줄의 $i$번째 줄은 다음과 같이 주어지는 공백으로 구분된 정수입니다.

  • 첫 번째 수는 $S_i$의 크기인 $\lvert S_i\rvert$입니다. $(\lvert S_i\rvert\ge 1)$
  • 다음 $\lvert S_i\rvert$개의 수는 오름차순으로 주어진 $S_i$의 각 원소, $S_{i,1},S_{i,2},\cdots ,S_{i,\lvert S_i\rvert}$입니다. $(1\le S_{i,j}\le 10^9)$

주어지는 집합의 크기의 합은 1ドル,円 000,円 000$을 넘지 않습니다. 즉, $\sum_{1\leq i\leq N}|S_{i}|\leq 1,円 000,円 000$입니다.

출력

$N$개의 줄을 출력합니다. 모든 1ドル \leq k \leq N$에 대해, $k$번째 줄에 $a_{k}$를 998ドル,244円,353円$으로 나눈 나머지를 출력합니다.

제한

예제 입력 1

3
2 1 2
2 2 3
3 1 2 3

예제 출력 1

7
5
1

$a_{1}$은 각각의 집합의 크기를 구해 모두 더하면 되므로 2ドル + 2 + 3 = 7$입니다.

$a_{2}$는 각 집합을 두 개씩 교집합한 뒤 크기를 더합니다. $S_{1} \cap S_{2} = \{2\},ドル $S_{1} \cap S_{3} = \{1, 2\},ドル $S_{2} \cap S_{3} = \{2, 3\}$이므로, 답은 1ドル + 2 + 2 = 5$입니다.

$a_{3}$는 모든 집합을 교집합한 뒤 크기를 구합니다. $S_{1} \cap S_{2} \cap S_{3} = \{2\}$이므로, 답은 1ドル$입니다.

힌트

W3sicHJvYmxlbV9pZCI6IjMwODA2IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVhZDUwXHVjYzI4IFx1YzlkMVx1ZDU2OSBcdWQwNmNcdWFlMzAgXHVkNTY5IiwiZGVzY3JpcHRpb24iOiI8cD4kTiRcdWFjMWNcdWM3NTggXHVjOWQxXHVkNTY5ICRTXzEsIFNfMiwgXFxjZG90cywgU19OJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5ZDFcdWIyYzhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPiRTXzEsIFNfMiwgXFxjZG90cywgU19OJCBcdWM5MTEgJGskXHVhYzFjXHViOTdjIFx1YWNlMFx1Yjk3OCBcdWM3NzRcdWQ2YzQsIFx1YWNlMFx1Yjk3OCBcdWM5ZDFcdWQ1NjlcdWI0ZTRcdWM3NTggXHVhZDUwXHVjOWQxXHVkNTY5XHVjNzU4IFx1ZDA2Y1x1YWUzMFx1Yjk3YyBcdWMwZGRcdWFjMDFcdWQ1NjlcdWMyZGNcdWIyZTQuICRhX2skXHViMjk0IFx1YzlkMVx1ZDU2OVx1Yzc0NCBcdWFjZTBcdWI5NzRcdWIyOTQgXHVhYzAwXHViMmE1XHVkNTVjIFx1YmFhOFx1YjRlMCAke04gXFxjaG9vc2Uga30kXHVhYzAwXHVjOWMwXHVjNzU4IFx1YzEyMFx1ZDBkZCBcdWJjMjlcdWJjOTUgXHViYWE4XHViNDUwXHVjNWQwIFx1YjMwMFx1ZDU3NCBcdWFkNTBcdWM5ZDFcdWQ1NjlcdWM3NTggXHVkMDZjXHVhZTMwXHViOTdjIFx1YjM1NFx1ZDU1YyBcdWFjMTJcdWM3ODVcdWIyYzhcdWIyZTQuIFx1YzIxOFx1YzJkZFx1YzczY1x1Yjg1Y1x1YjI5NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzc0IFx1ZDQ1Y1x1ZDYwNFx1ZDU2MCBcdWMyMTggXHVjNzg4XHVjMmI1XHViMmM4XHViMmU0OjxcL3A+XHJcblxyXG48cD4kJGFfe2t9IDo9IFxcc3VtX3tcXHN1YnN0YWNre1xcdGF1IFxcc3Vic2V0ZXEgXFx7MSwgMiwgXFxjZG90cywgTlxcfSBcXFxcfFxcdGF1fD1rfX0gXFxsZWZ0fFxcYmlnY2FwX3tpIFxcaW4gXFx0YXV9IFNfe2l9XFxyaWdodHwuJCQ8XC9wPlxyXG5cclxuPHA+XHViYWE4XHViNGUwICRrPTEsIDIsIFxcY2RvdHMsIE4kXHVjNWQwIFx1YjMwMFx1ZDU3NCwgJGFfe2t9JFx1Yjk3YyAkOTk4XFwsMjQ0XFwsMzUzJCAkKD0xMTkgXFx0aW1lcyAyXnsyM30rMSkkXHVjNzNjXHViODVjIFx1YjA5OFx1YjIwOCBcdWIwOThcdWJhMzhcdWM5YzBcdWI5N2MgXHVhZDZjXHVkNTU4XHVjMTM4XHVjNjk0LiAkOTk4XFwsMjQ0XFwsMzUzJFx1Yzc0MCBcdWMxOGNcdWMyMThcdWM3ODVcdWIyYzhcdWIyZTQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWNjYWIgXHVjOTA0XHVjNWQwIFx1YzgxNVx1YzIxOCAkTiRcdWM3NzQgXHVjOGZjXHVjNWI0XHVjOWQxXHViMmM4XHViMmU0LiAoJDFcXGxlcSBOXFxsZXEgMVxcLCAwMDBcXCwgMDAwJCk8XC9wPlxyXG5cclxuPHA+XHViMmU0XHVjNzRjICROJFx1YWMxY1x1Yzc1OCBcdWM5MDRcdWM3NTggJGkkXHViYzg4XHVjOWY4IFx1YzkwNFx1Yzc0MCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzc0IFx1YzhmY1x1YzViNFx1YzljMFx1YjI5NCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDFjIFx1YzgxNVx1YzIxOFx1Yzc4NVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YzIxOFx1YjI5NCAkU19pJFx1Yzc1OCBcdWQwNmNcdWFlMzBcdWM3NzggJFxcbHZlcnQgU19pXFxydmVydCRcdWM3ODVcdWIyYzhcdWIyZTQuICQoXFxsdmVydCBTX2lcXHJ2ZXJ0XFxnZSAxKSQ8XC9saT5cclxuXHQ8bGk+XHViMmU0XHVjNzRjICRcXGx2ZXJ0IFNfaVxccnZlcnQkXHVhYzFjXHVjNzU4IFx1YzIxOFx1YjI5NCBcdWM2MjRcdWI5ODRcdWNjMjhcdWMyMWNcdWM3M2NcdWI4NWMgXHVjOGZjXHVjNWI0XHVjOWM0ICRTX2kkXHVjNzU4IFx1YWMwMSBcdWM2ZDBcdWMxOGMsICRTX3tpLDF9LFNfe2ksMn0sXFxjZG90cyAsU197aSxcXGx2ZXJ0IFNfaVxccnZlcnR9JFx1Yzc4NVx1YjJjOFx1YjJlNC4gJCgxXFxsZSBTX3tpLGp9XFxsZSAxMF45KSQ8XC9saT5cclxuPFwvdWw+XHJcblxyXG48cD5cdWM4ZmNcdWM1YjRcdWM5YzBcdWIyOTQgXHVjOWQxXHVkNTY5XHVjNzU4IFx1ZDA2Y1x1YWUzMFx1Yzc1OCBcdWQ1NjlcdWM3NDAgJDFcXCwgMDAwXFwsIDAwMCRcdWM3NDQgXHViMTE4XHVjOWMwIFx1YzU0YVx1YzJiNVx1YjJjOFx1YjJlNC4gXHVjOTg5LCAkXFxzdW1fezFcXGxlcSBpXFxsZXEgTn18U197aX18XFxsZXEgMVxcLCAwMDBcXCwgMDAwJFx1Yzc4NVx1YjJjOFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD4kTiRcdWFjMWNcdWM3NTggXHVjOTA0XHVjNzQ0IFx1Y2Q5Y1x1YjgyNVx1ZDU2OVx1YjJjOFx1YjJlNC4gXHViYWE4XHViNGUwICQxIFxcbGVxIGsgXFxsZXEgTiRcdWM1ZDAgXHViMzAwXHVkNTc0LCAkayRcdWJjODhcdWM5ZjggXHVjOTA0XHVjNWQwICRhX3trfSRcdWI5N2MgJDk5OFxcLDI0NFxcLDM1MyRcdWM3M2NcdWI4NWMgXHViMDk4XHViMjA4IFx1YjA5OFx1YmEzOFx1YzljMFx1Yjk3YyBcdWNkOWNcdWI4MjVcdWQ1NjlcdWIyYzhcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiS29yZWFuIiwic2FtcGxlX2V4cGxhaW5fMSI6IjxwPiRhX3sxfSRcdWM3NDAgXHVhYzAxXHVhYzAxXHVjNzU4IFx1YzlkMVx1ZDU2OVx1Yzc1OCBcdWQwNmNcdWFlMzBcdWI5N2MgXHVhZDZjXHVkNTc0IFx1YmFhOFx1YjQ1MCBcdWIzNTRcdWQ1NThcdWJhNzQgXHViNDE4XHViYmMwXHViODVjICQyICsgMiArIDMgPSA3JFx1Yzc4NVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+JGFfezJ9JFx1YjI5NCBcdWFjMDEgXHVjOWQxXHVkNTY5XHVjNzQ0IFx1YjQ1MCBcdWFjMWNcdWM1MjkgXHVhZDUwXHVjOWQxXHVkNTY5XHVkNTVjIFx1YjRhNCBcdWQwNmNcdWFlMzBcdWI5N2MgXHViMzU0XHVkNTY5XHViMmM4XHViMmU0LiAkU197MX0gXFxjYXAgU197Mn0gPSBcXHsyXFx9JCwgJFNfezF9IFxcY2FwIFNfezN9ID0gXFx7MSwgMlxcfSQsICRTX3syfSBcXGNhcCBTX3szfSA9IFxcezIsIDNcXH0kXHVjNzc0XHViYmMwXHViODVjLCBcdWIyZjVcdWM3NDAgJDEgKyAyICsgMiA9IDUkXHVjNzg1XHViMmM4XHViMmU0LjxcL3A+XHJcblxyXG48cD4kYV97M30kXHViMjk0IFx1YmFhOFx1YjRlMCBcdWM5ZDFcdWQ1NjlcdWM3NDQgXHVhZDUwXHVjOWQxXHVkNTY5XHVkNTVjIFx1YjRhNCBcdWQwNmNcdWFlMzBcdWI5N2MgXHVhZDZjXHVkNTY5XHViMmM4XHViMmU0LiAkU197MX0gXFxjYXAgU197Mn0gXFxjYXAgU197M30gPSBcXHsyXFx9JFx1Yzc3NFx1YmJjMFx1Yjg1YywgXHViMmY1XHVjNzQwICQxJFx1Yzc4NVx1YjJjOFx1YjJlNC48XC9wPlxyXG4ifSx7InByb2JsZW1faWQiOiIzMDgwNiIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkludGVyc2VjdGlvbiBTaXplIFN1bSIsImRlc2NyaXB0aW9uIjoiPHA+JE4kIHNldHMgJFNfMSwgU18yLCBcXGNkb3RzLCBTX04kIGFyZSBnaXZlbi48XC9wPlxyXG5cclxuPHA+TGV0JiMzOTtzIHRoaW5rIGFib3V0IHRoZSBzaXplIG9mIHRoZSBpbnRlcnNlY3Rpb24gb2YgJGskIHNldHMgZnJvbSAkU18xLCBTXzIsIFxcY2RvdHMsIFNfTiQuICRhX2skIGlzIHRoZSBzdW0gb2YgdGhlIHNpemVzIG9mIGFsbCAke04gXFxjaG9vc2Uga30kIHBvc3NpYmxlIGludGVyc2VjdGlvbnMuIFdlIGNhbiB3cml0ZSB0aGlzIGFzIHRoZSBmb2xsb3dpbmcgZXF1YXRpb246PFwvcD5cclxuXHJcbjxwPiQkYV97a30gOj0gXFxzdW1fe1xcc3Vic3RhY2t7XFx0YXUgXFxzdWJzZXRlcSBcXHsxLCAyLCBcXGNkb3RzLCBOXFx9IFxcXFx8XFx0YXV8PWt9fSBcXGxlZnR8XFxiaWdjYXBfe2kgXFxpbiBcXHRhdX0gU197aX1cXHJpZ2h0fC4kJDxcL3A+XHJcblxyXG48cD5Gb3IgYWxsICRrPTEsIDIsIFxcY2RvdHMsIE4kLCBmaW5kICRhX3trfSQgbW9kdWxvICQ5OThcXCwyNDRcXCwzNTMkICQoPTExOSBcXHRpbWVzIDJeezIzfSsxKSQuICQ5OThcXCwyNDRcXCwzNTMkIGlzIHByaW1lLjxcL3A+XHJcbiIsImlucHV0IjoiPHA+VGhlIGZpcnN0IGxpbmUgb2YgaW5wdXQgY29udGFpbnMgYSBzaW5nbGUgaW50ZWdlciAkTiQuICgkMVxcbGVxIE5cXGxlcSAxXFwsIDAwMFxcLCAwMDAkKTxcL3A+XHJcblxyXG48cD5UaGUgJGkkLXRoIG9mIHRoZSBuZXh0ICROJCBsaW5lcywgY29udGFpbnMgc3BhY2Utc2VwYXJhdGVkIGludGVnZXJzIGFzIGZvbGxvd3M6PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+VGhlIGZpcnN0IGludGVnZXIgaXMgJFxcbHZlcnQgU19pXFxydmVydCQsIHRoZSBzaXplIG9mIHRoZSBzZXQgJFNfaSQuICQoXFxsdmVydCBTX2lcXHJ2ZXJ0XFxnZSAxKSQ8XC9saT5cclxuXHQ8bGk+VGhlIG5leHQgJFxcbHZlcnQgU19pXFxydmVydCQgaW50ZWdlcnMgY29udGFpbiB0aGUgZWxlbWVudHMgb2YgJFNfaSQgc29ydGVkIGluIGFzY2VuZGluZyBvcmRlciwgJFNfe2ksMX0sU197aSwyfSxcXGNkb3RzICxTX3tpLFxcbHZlcnQgU19pXFxydmVydH0kLiAkKDFcXGxlIFNfe2ksan1cXGxlIDEwXjkpJDxcL2xpPlxyXG48XC91bD5cclxuXHJcbjxwPlRoZSBzdW0gb2YgdGhlIHNpemVzIG9mIHRoZSBnaXZlbiBzZXRzIGRvZXMgbm90IGV4Y2VlZCAkMVxcLCAwMDBcXCwgMDAwJC4gVGhhdCBpcywgJFxcc3VtX3sxXFxsZXEgaVxcbGVxIE59fFNfe2l9fFxcbGVxIDFcXCwgMDAwXFwsIDAwMCQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+UHJpbnQgJE4kIGxpbmVzLiBUaGUgJGskLXRoIGxpbmUgb2Ygb3V0cHV0IGZvciBlYWNoICQxIFxcbGVxIGsgXFxsZXEgTiQgc2hvdWxkIGNvbnRhaW4gJGFfe2t9JCBtb2R1bG8gJDk5OFxcLDI0NFxcLDM1MyQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCIsInNhbXBsZV9leHBsYWluXzEiOiI8cD5JbiB0aGUgZXhhbXBsZSwgJGFfezF9JCBpcyB0aGUgc3VtIG9mIHRoZSBzaXplcyBvZiBhbGwgc2V0cywgYW5kIHRoZXJlZm9yZSAkMiArIDIgKyAzID0gNyQuPFwvcD5cclxuXHJcbjxwPiRhX3syfSQgY2FuIGJlIGNhbGN1bGF0ZWQgYnkgdGFraW5nIGEgcGFpciBvZiBzZXRzIGFuZCBzdW1taW5nIHRoZSBzaXplIG9mIHRoZWlyIGludGVyc2VjdGlvbi4gJFNfezF9IFxcY2FwIFNfezJ9ID0gXFx7MlxcfSQsICRTX3sxfSBcXGNhcCBTX3szfSA9IFxcezEsIDJcXH0kLCAkU197Mn0gXFxjYXAgU197M30gPSBcXHsyLCAzXFx9JC4gVGhlcmVmb3JlLCB0aGUgYW5zd2VyIGlzICQxICsgMiArIDIgPSA1JC48XC9wPlxyXG5cclxuPHA+JGFfezN9JCBpcyB0aGUgc2l6ZSBvZiB0aGUgaW50ZXJzZWN0aW9uIG9mIGFsbCBzZXRzLiAkU197MX0gXFxjYXAgU197Mn0gXFxjYXAgU197M30gPSBcXHsyXFx9JC4gVGhlcmVmb3JlLCB0aGUgYW5zd2VyIGlzICQxJC48XC9wPlxyXG4ifV0=

출처

Contest > solved.ac > solved.ac Grand Arena #3 > Division 2 E번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /