문제
정점이 $n$개인 트리가 주어진다. 각 정점에는 1ドル$부터 $n$까지의 번호가 붙어 있고, $i$번 정점에는 정수 $a_{i}$가 쓰여 있다. 당신은 원하는 만큼 시행을 하여 모든 $a_{i}$를 같게 만들어야 한다.
한 번의 시행에서 당신은 정점 $v$와 음이 아닌 정수 $c$를 선택한다. 그 다음 $v$를 루트로 하는 서브트리의 모든 정점 $i$에 대하여, $a_{i}$를 $a_{i}$를 $a_{i} \oplus c$로 바꾼다. $v$를 루트로 하는 서브트리의 크기를 $s$라 할 때, 이 시행의 비용은 $s \cdot c$이다. $\oplus$는 bitwise XOR을 의미한다.
$r$번 정점이 트리의 루트일 때 목표를 달성하기 위한 최소 비용을 $m_{r}$이라 하자. $m_{1}, m_{2}, \ldots, m_{n}$을 구하여라.
출력
각각의 테스트 케이스마다 $n$개의 정수 $m_1, m_2, \ldots, m_n$을 공백으로 구분하여 출력한다.
노트
첫 번째 테스트 케이스에서, 다음 방법으로 목표를 달성할 수 있다.
- 첫 번째 시행에서 $v=2,ドル $c=1$을 선택한다. 시행 후 $a=[3, 3, 0, 1]$이 된다. 이 시행의 비용은 3ドル$이다.
- 두 번째 시행에서 $v=3,ドル $c=3$을 선택한다. 시행 후 $a=[3, 3, 3, 1]$이 된다. 이 시행의 비용은 3ドル$이다.
- 세 번째 시행에서 $v=4,ドル $c=2$를 선택한다. 시행 후 $a=[3, 3, 3, 3]$이 된다. 이 시행의 비용은 2ドル$이다.
이 과정의 총 비용은 3ドル+3+2=8$이다. 8ドル$ 미만의 비용으로 목표를 달성하는 방법이 없음을 증명할 수 있다.
$m_{2},ドル $m_{3},ドル $m_{4}$도 마찬가지로 찾을 수 있다.
두 번째 테스트 케이스에서, 정점이 하나이므로 목표가 이미 달성되었다.
W3sicHJvYmxlbV9pZCI6IjMwMjM5IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVkMmI4XHViOWFjXHVjNjQwIFhPUiIsImRlc2NyaXB0aW9uIjoiPHA+XHVjODE1XHVjODEwXHVjNzc0ICRuJFx1YWMxY1x1Yzc3OCBcdWQyYjhcdWI5YWNcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWFjMDEgXHVjODE1XHVjODEwXHVjNWQwXHViMjk0ICQxJFx1YmQ4MFx1ZDEzMCAkbiRcdWFlNGNcdWM5YzBcdWM3NTggXHViYzg4XHVkNjM4XHVhYzAwIFx1YmQ5OVx1YzViNCBcdWM3ODhcdWFjZTAsICRpJFx1YmM4OCBcdWM4MTVcdWM4MTBcdWM1ZDBcdWIyOTQgXHVjODE1XHVjMjE4ICRhX3tpfSRcdWFjMDAgXHVjNGYwXHVjNWVjIFx1Yzc4OFx1YjJlNC4gXHViMmY5XHVjMmUwXHVjNzQwIFx1YzZkMFx1ZDU1OFx1YjI5NCBcdWI5Y2NcdWQwN2MgXHVjMmRjXHVkNTg5XHVjNzQ0IFx1ZDU1OFx1YzVlYyBcdWJhYThcdWI0ZTAgJGFfe2l9JFx1Yjk3YyBcdWFjMTlcdWFjOGMgXHViOWNjXHViNGU0XHVjNWI0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVkNTVjIFx1YmM4OFx1Yzc1OCBcdWMyZGNcdWQ1ODlcdWM1ZDBcdWMxMWMgXHViMmY5XHVjMmUwXHVjNzQwIFx1YzgxNVx1YzgxMCAkdiRcdWM2NDAgXHVjNzRjXHVjNzc0IFx1YzU0NFx1YjJjYyBcdWM4MTVcdWMyMTggJGMkXHViOTdjIFx1YzEyMFx1ZDBkZFx1ZDU1Y1x1YjJlNC4gXHVhZGY4IFx1YjJlNFx1Yzc0YyAkdiRcdWI5N2MgXHViOGU4XHVkMmI4XHViODVjIFx1ZDU1OFx1YjI5NCBcdWMxMWNcdWJlMGNcdWQyYjhcdWI5YWNcdWM3NTggXHViYWE4XHViNGUwIFx1YzgxNVx1YzgxMCAkaSRcdWM1ZDAgXHViMzAwXHVkNTU4XHVjNWVjLCAkYV97aX0kXHViOTdjICRhX3tpfSRcdWI5N2MgJGFfe2l9IFxcb3BsdXMgYyRcdWI4NWMgXHViYzE0XHVhZmJjXHViMmU0LiAkdiRcdWI5N2MgXHViOGU4XHVkMmI4XHViODVjIFx1ZDU1OFx1YjI5NCBcdWMxMWNcdWJlMGNcdWQyYjhcdWI5YWNcdWM3NTggXHVkMDZjXHVhZTMwXHViOTdjICRzJFx1Yjc3YyBcdWQ1NjAgXHViNTRjLCBcdWM3NzQgXHVjMmRjXHVkNTg5XHVjNzU4IFx1YmU0NFx1YzZhOVx1Yzc0MCAkcyBcXGNkb3QgYyRcdWM3NzRcdWIyZTQuICRcXG9wbHVzJFx1YjI5NCA8YSBocmVmPVwiaHR0cHM6XC9cL2VuLndpa2lwZWRpYS5vcmdcL3dpa2lcL0JpdHdpc2Vfb3BlcmF0aW9uI1hPUlwiPmJpdHdpc2UgWE9SPFwvYT5cdWM3NDQgXHVjNzU4XHViYmY4XHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD4kciRcdWJjODggXHVjODE1XHVjODEwXHVjNzc0IFx1ZDJiOFx1YjlhY1x1Yzc1OCBcdWI4ZThcdWQyYjhcdWM3N2MgXHViNTRjIFx1YmFhOVx1ZDQ1Y1x1Yjk3YyBcdWIyZWNcdWMxMzFcdWQ1NThcdWFlMzAgXHVjNzA0XHVkNTVjIFx1Y2Q1Y1x1YzE4YyBcdWJlNDRcdWM2YTlcdWM3NDQgJG1fe3J9JFx1Yzc3NFx1Yjc3YyBcdWQ1NThcdWM3OTAuICRtX3sxfSwgbV97Mn0sIFxcbGRvdHMsIG1fe259JFx1Yzc0NCBcdWFkNmNcdWQ1NThcdWM1ZWNcdWI3N2MuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWFjMDEgXHVjNzg1XHViODI1XHVjNzQwIFx1YzVlY1x1YjdlYyBcdWFjMWNcdWM3NTggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1Yjg1YyBcdWM3NzRcdWI4ZThcdWM1YjRcdWM4MzggXHVjNzg4XHViMmU0LiBcdWNjYWIgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNzU4IFx1YWMxY1x1YzIxOCAkdCRcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0KCQxIFxcbGUgdCBcXGxlIDEwXns0fSQpLiBcdWIyZTRcdWM3NGMgXHVjOTA0XHViZDgwXHVkMTMwIFx1YWMwMVx1YWMwMVx1Yzc1OCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVhYzAxXHVhYzAxXHVjNzU4IFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWM3NTggXHVjY2FiIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDAgXHVjODE1XHVjMjE4ICRuJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQgKCQxIFxcbGUgbiBcXGxlIDIgXFxjZG90IDEwXns1fSQpLjxcL3A+XHJcblxyXG48cD5cdWI0NTAgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCAkbiRcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4ICRhXzEsIGFfMiwgXFxsZG90cywgYV9uJFx1YWMwMCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQgKCQwIFxcbGUgYV9pICZsdDsgMl57MjB9JCkuPFwvcD5cclxuXHJcbjxwPlx1YjJlNFx1Yzc0YyAkbi0xJFx1YWMxY1x1Yzc1OCBcdWM5MDRcdWM1ZDAgXHVkMmI4XHViOWFjXHVjNzU4IFx1YWMwNFx1YzEyMFx1Yzc3NCBcdWM3ODdcdWIyOTQgXHVjODE1XHVjODEwXHVjNzU4IFx1YmM4OFx1ZDYzOFx1Yjk3YyBcdWIwOThcdWQwYzBcdWIwYjRcdWIyOTQgXHViNDUwIFx1YzgxNVx1YzIxOCAkdSRcdWM2NDAgJHYkXHVhYzAwIFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MThcdWM1YjQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0ICgkMSBcXGxlIHUsIHYgXFxsZSBuJCksPFwvcD5cclxuXHJcbjxwPlx1YzhmY1x1YzViNFx1YzljNCBcdWFjMDRcdWMxMjBcdWM3NzQgXHVkMmI4XHViOWFjXHViOTdjIFx1Yzc3NFx1YjhmOFx1Yzc3NCBcdWJjZjRcdWM3YTVcdWI0MWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YmFhOFx1YjRlMCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNWQwXHVjMTFjICRuJFx1Yzc1OCBcdWNkMWRcdWQ1NjlcdWM3NDAgJDIgXFxjZG90IDEwXns1fSRcdWI5N2MgXHViMTE4XHVjOWMwIFx1YzU0YVx1YjI5NFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWFjMDFcdWFjMDFcdWM3NTggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YjljOFx1YjJlNCAkbiRcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4ICRtXzEsIG1fMiwgXFxsZG90cywgbV9uJFx1Yzc0NCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHVkNTU4XHVjNWVjIFx1Y2Q5Y1x1YjgyNVx1ZDU1Y1x1YjJlNC48XC9wPlxyXG4iLCJoaW50IjoiPHA+XHVjY2FiIFx1YmM4OFx1YzlmOCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNWQwXHVjMTFjLCBcdWIyZTRcdWM3NGMgXHViYzI5XHViYzk1XHVjNzNjXHViODVjIFx1YmFhOVx1ZDQ1Y1x1Yjk3YyBcdWIyZWNcdWMxMzFcdWQ1NjAgXHVjMjE4IFx1Yzc4OFx1YjJlNC48XC9wPlxyXG5cclxuPG9sPlxyXG5cdDxsaT5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YzJkY1x1ZDU4OVx1YzVkMFx1YzExYyAkdj0yJCwgJGM9MSRcdWM3NDQgXHVjMTIwXHVkMGRkXHVkNTVjXHViMmU0LiBcdWMyZGNcdWQ1ODkgXHVkNmM0ICRhPVszLCAzLCAwLCAxXSRcdWM3NzQgXHViNDFjXHViMmU0LiBcdWM3NzQgXHVjMmRjXHVkNTg5XHVjNzU4IFx1YmU0NFx1YzZhOVx1Yzc0MCAkMyRcdWM3NzRcdWIyZTQuPFwvbGk+XHJcblx0PGxpPlx1YjQ1MCBcdWJjODhcdWM5ZjggXHVjMmRjXHVkNTg5XHVjNWQwXHVjMTFjICR2PTMkLCAkYz0zJFx1Yzc0NCBcdWMxMjBcdWQwZGRcdWQ1NWNcdWIyZTQuIFx1YzJkY1x1ZDU4OSBcdWQ2YzQgJGE9WzMsIDMsIDMsIDFdJFx1Yzc3NCBcdWI0MWNcdWIyZTQuIFx1Yzc3NCBcdWMyZGNcdWQ1ODlcdWM3NTggXHViZTQ0XHVjNmE5XHVjNzQwICQzJFx1Yzc3NFx1YjJlNC48XC9saT5cclxuXHQ8bGk+XHVjMTM4IFx1YmM4OFx1YzlmOCBcdWMyZGNcdWQ1ODlcdWM1ZDBcdWMxMWMgJHY9NCQsICRjPTIkXHViOTdjIFx1YzEyMFx1ZDBkZFx1ZDU1Y1x1YjJlNC4gXHVjMmRjXHVkNTg5IFx1ZDZjNCAkYT1bMywgMywgMywgM10kXHVjNzc0IFx1YjQxY1x1YjJlNC4gXHVjNzc0IFx1YzJkY1x1ZDU4OVx1Yzc1OCBcdWJlNDRcdWM2YTlcdWM3NDAgJDIkXHVjNzc0XHViMmU0LjxcL2xpPlxyXG48XC9vbD5cclxuXHJcbjxwPlx1Yzc3NCBcdWFjZmNcdWM4MTVcdWM3NTggXHVjZDFkIFx1YmU0NFx1YzZhOVx1Yzc0MCAkMyszKzI9OCRcdWM3NzRcdWIyZTQuICQ4JCBcdWJiZjhcdWI5Y2NcdWM3NTggXHViZTQ0XHVjNmE5XHVjNzNjXHViODVjIFx1YmFhOVx1ZDQ1Y1x1Yjk3YyBcdWIyZWNcdWMxMzFcdWQ1NThcdWIyOTQgXHViYzI5XHViYzk1XHVjNzc0IFx1YzVjNlx1Yzc0Y1x1Yzc0NCBcdWM5OWRcdWJhODVcdWQ1NjAgXHVjMjE4IFx1Yzc4OFx1YjJlNC48XC9wPlxyXG5cclxuPHA+JG1fezJ9JCwgJG1fezN9JCwgJG1fezR9JFx1YjNjNCBcdWI5YzhcdWNjMmNcdWFjMDBcdWM5YzBcdWI4NWMgXHVjYzNlXHVjNzQ0IFx1YzIxOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjQ1MCBcdWJjODhcdWM5ZjggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YzVkMFx1YzExYywgXHVjODE1XHVjODEwXHVjNzc0IFx1ZDU1OFx1YjA5OFx1Yzc3NFx1YmJjMFx1Yjg1YyBcdWJhYTlcdWQ0NWNcdWFjMDAgXHVjNzc0XHViYmY4IFx1YjJlY1x1YzEzMVx1YjQxOFx1YzVjOFx1YjJlNC48XC9wPlxyXG4iLCJvcmlnaW5hbCI6IjEiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IktvcmVhbiJ9LHsicHJvYmxlbV9pZCI6IjMwMjM5IiwicHJvYmxlbV9sYW5nIjoiMSIsInRpdGxlIjoiVHJlZSBYT1IiLCJkZXNjcmlwdGlvbiI6IjxwPllvdSBhcmUgZ2l2ZW4gYSB0cmVlIHdpdGggJG4kIHZlcnRpY2VzIGxhYmVsZWQgZnJvbSAkMSQgdG8gJG4kLiBBbiBpbnRlZ2VyICRhX3tpfSQgaXMgd3JpdHRlbiBvbiB2ZXJ0ZXggJGkkIGZvciAkaSA9IDEsIDIsIFxcbGRvdHMsIG4kLiBZb3Ugd2FudCB0byBtYWtlIGFsbCAkYV97aX0kIGVxdWFsIGJ5IHBlcmZvcm1pbmcgc29tZSAocG9zc2libHksIHplcm8pIHNwZWxscy48XC9wPlxyXG5cclxuPHA+U3VwcG9zZSB5b3Ugcm9vdCB0aGUgdHJlZSBhdCBzb21lIHZlcnRleC4gT24gZWFjaCBzcGVsbCwgeW91IGNhbiBzZWxlY3QgYW55IHZlcnRleCAkdiQgYW5kIGFueSBub24tbmVnYXRpdmUgaW50ZWdlciAkYyQuIFRoZW4gZm9yIGFsbCB2ZXJ0aWNlcyAkaSQgaW4gdGhlIHN1YnRyZWUkXntcXGRhZ2dlcn0kIG9mICR2JCwgcmVwbGFjZSAkYV97aX0kIHdpdGggJGFfe2l9IFxcb3BsdXMgYyQuIFRoZSBjb3N0IG9mIHRoaXMgc3BlbGwgaXMgJHMgXFxjZG90IGMkLCB3aGVyZSAkcyQgaXMgdGhlIG51bWJlciBvZiB2ZXJ0aWNlcyBpbiB0aGUgc3VidHJlZS4gSGVyZSAkXFxvcGx1cyQgZGVub3RlcyB0aGUgPGEgaHJlZj1cImh0dHBzOlwvXC9lbi53aWtpcGVkaWEub3JnXC93aWtpXC9CaXR3aXNlX29wZXJhdGlvbiNYT1JcIj5iaXR3aXNlIFhPUiBvcGVyYXRpb248XC9hPi48XC9wPlxyXG5cclxuPHA+TGV0ICRtX3IkIGJlIHRoZSBtaW5pbXVtIHBvc3NpYmxlIHRvdGFsIGNvc3QgcmVxdWlyZWQgdG8gbWFrZSBhbGwgJGFfaSQgZXF1YWwsIGlmIHZlcnRleCAkciQgaXMgY2hvc2VuIGFzIHRoZSByb290IG9mIHRoZSB0cmVlLiBGaW5kICRtX3sxfSwgbV97Mn0sIFxcbGRvdHMsIG1fe259JC48XC9wPlxyXG5cclxuPHA+JF57XFxkYWdnZXJ9JCBTdXBwb3NlIHZlcnRleCAkciQgaXMgY2hvc2VuIGFzIHRoZSByb290IG9mIHRoZSB0cmVlLiBUaGVuIHZlcnRleCAkaSQgYmVsb25ncyB0byB0aGUgc3VidHJlZSBvZiAkdiQgaWYgdGhlIHNpbXBsZSBwYXRoIGZyb20gJGkkIHRvICRyJCBjb250YWlucyAkdiQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5FYWNoIHRlc3QgY29udGFpbnMgbXVsdGlwbGUgdGVzdCBjYXNlcy4gVGhlIGZpcnN0IGxpbmUgY29udGFpbnMgdGhlIG51bWJlciBvZiB0ZXN0IGNhc2VzICR0JCAoJDEgXFxsZSB0IFxcbGUgMTBeezR9JCkuIFRoZSBkZXNjcmlwdGlvbiBvZiB0aGUgdGVzdCBjYXNlcyBmb2xsb3dzLjxcL3A+XHJcblxyXG48cD5UaGUgZmlyc3QgbGluZSBvZiBlYWNoIHRlc3QgY2FzZSBjb250YWlucyBhIHNpbmdsZSBpbnRlZ2VyICRuJCAoJDEgXFxsZSBuIFxcbGUgMiBcXGNkb3QgMTBeezV9JCkuPFwvcD5cclxuXHJcbjxwPlRoZSBzZWNvbmQgbGluZSBvZiBlYWNoIHRlc3QgY2FzZSBjb250YWlucyAkbiQgaW50ZWdlcnMgJGFfMSwgYV8yLCBcXGxkb3RzLCBhX24kICgkMCBcXGxlIGFfaSAmbHQ7IDJeezIwfSQpLjxcL3A+XHJcblxyXG48cD5FYWNoIG9mIHRoZSBuZXh0ICRuLTEkIGxpbmVzIGNvbnRhaW5zIHR3byBpbnRlZ2VycyAkdSQgYW5kICR2JCAoJDEgXFxsZSB1LCB2IFxcbGUgbiQpLCBkZW5vdGluZyB0aGF0IHRoZXJlIGlzIGFuIGVkZ2UgY29ubmVjdGluZyB0d28gdmVydGljZXMgJHUkIGFuZCAkdiQuPFwvcD5cclxuXHJcbjxwPkl0IGlzIGd1YXJhbnRlZWQgdGhhdCB0aGUgZ2l2ZW4gZWRnZXMgZm9ybSBhIHRyZWUuPFwvcD5cclxuXHJcbjxwPkl0IGlzIGd1YXJhbnRlZWQgdGhhdCB0aGUgc3VtIG9mICRuJCBvdmVyIGFsbCB0ZXN0IGNhc2VzIGRvZXMgbm90IGV4Y2VlZCAkMiBcXGNkb3QgMTBeezV9JC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5Gb3IgZWFjaCB0ZXN0IGNhc2UsIHByaW50ICRtXzEsIG1fMiwgXFxsZG90cywgbV9uJCBvbiBhIG5ldyBsaW5lLjxcL3A+XHJcbiIsImhpbnQiOiI8cD5JbiB0aGUgZmlyc3QgdGVzdCBjYXNlLCB0byBmaW5kICRtXzEkIHdlIHJvb3QgdGhlIHRyZWUgYXQgdmVydGV4ICQxJC48XC9wPlxyXG5cclxuPG9sPlxyXG5cdDxsaT5JbiB0aGUgZmlyc3Qgc3BlbGwsIGNob29zZSAkdj0yJCBhbmQgJGM9MSQuIEFmdGVyIHBlcmZvcm1pbmcgdGhlIHNwZWxsLCAkYSQgd2lsbCBiZWNvbWUgJFszLCAzLCAwLCAxXSQuIFRoZSBjb3N0IG9mIHRoaXMgc3BlbGwgaXMgJDMkLjxcL2xpPlxyXG5cdDxsaT5JbiB0aGUgc2Vjb25kIHNwZWxsLCBjaG9vc2UgJHY9MyQgYW5kICRjPTMkLiBBZnRlciBwZXJmb3JtaW5nIHRoZSBzcGVsbCwgJGEkIHdpbGwgYmVjb21lICRbMywgMywgMywgMV0kLiBUaGUgY29zdCBvZiB0aGlzIHNwZWxsIGlzICQzJC48XC9saT5cclxuXHQ8bGk+SW4gdGhlIHRoaXJkIHNwZWxsLCBjaG9vc2UgJHY9NCQgYW5kICRjPTIkLiBBZnRlciBwZXJmb3JtaW5nIHRoZSBzcGVsbCwgJGEkIHdpbGwgYmVjb21lICRbMywgMywgMywgM10kLiBUaGUgY29zdCBvZiB0aGlzIHNwZWxsIGlzICQyJC48XC9saT5cclxuPFwvb2w+XHJcblxyXG48cD5Ob3cgYWxsIHRoZSB2YWx1ZXMgaW4gYXJyYXkgJGEkIGFyZSBlcXVhbCwgYW5kIHRoZSB0b3RhbCBjb3N0IGlzICQzICsgMyArIDIgPSA4JC48XC9wPlxyXG5cclxuPHA+VGhlIHZhbHVlcyAkbV8yJCwgJG1fMyQsICRtXzQkIGNhbiBiZSBmb3VuZCBhbmFsb2dvdXNseS48XC9wPlxyXG5cclxuPHA+SW4gdGhlIHNlY29uZCB0ZXN0IGNhc2UsIHRoZSBnb2FsIGlzIGFscmVhZHkgYWNoaWV2ZWQgYmVjYXVzZSB0aGVyZSBpcyBvbmx5IG9uZSB2ZXJ0ZXguPFwvcD5cclxuIiwib3JpZ2luYWwiOiIwIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIn1d