문제
수열 $a_{1}, a_{2}, \ldots, a_{n}$이 주어진다. 다음 조건을 만족하는 수열 $b_{1}, b_{2}, \ldots, b_{n}$을 좋은 수열이라고 정의한다:
- $b_{i}$는 양의 정수이다($i = 1, 2, \ldots, n$).
- $b_{i} \neq a_{i}$이다($i = 1, 2, \ldots, n$).
- $b_{1} < b_{2} < \ldots < b_{n}$이다.
좋은 수열 $b_{1}, b_{2}, \ldots, b_{n}$에 대하여, $b_{n}$의 최솟값을 구하여라.
노트
첫 번째 테스트 케이스에서, $b = [2, 4, 5, 7, 8]$은 좋은 수열이다. $b_{5} < 8$인 좋은 수열 $b$가 없음을 증명할 수 있다.
두 번째 테스트 케이스에서, $b = [1, 2, 3, 4]$가 가능하다.
세 번째 테스트 케이스에서, $b = [2]$가 가능하다.
W3sicHJvYmxlbV9pZCI6IjMwMjM2IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVjOTlkXHVhYzAwIFx1YzIxOFx1YzVmNCIsImRlc2NyaXB0aW9uIjoiPHA+XHVjMjE4XHVjNWY0ICRhX3sxfSwgYV97Mn0sIFxcbGRvdHMsIGFfe259JFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1YjJlNFx1Yzc0YyBcdWM4NzBcdWFjNzRcdWM3NDQgXHViOWNjXHVjODcxXHVkNTU4XHViMjk0IFx1YzIxOFx1YzVmNCAkYl97MX0sIGJfezJ9LCBcXGxkb3RzLCBiX3tufSRcdWM3NDQgPHN0cm9uZz5cdWM4OGJcdWM3NDAgXHVjMjE4XHVjNWY0PFwvc3Ryb25nPlx1Yzc3NFx1Yjc3Y1x1YWNlMCBcdWM4MTVcdWM3NThcdWQ1NWNcdWIyZTQ6PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+JGJfe2l9JFx1YjI5NCBcdWM1OTFcdWM3NTggXHVjODE1XHVjMjE4XHVjNzc0XHViMmU0KCRpID0gMSwgMiwgXFxsZG90cywgbiQpLjxcL2xpPlxyXG5cdDxsaT4kYl97aX0gXFxuZXEgYV97aX0kXHVjNzc0XHViMmU0KCRpID0gMSwgMiwgXFxsZG90cywgbiQpLjxcL2xpPlxyXG5cdDxsaT4kYl97MX0gJmx0OyBiX3syfSAmbHQ7IFxcbGRvdHMgJmx0OyBiX3tufSRcdWM3NzRcdWIyZTQuPFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+XHVjODhiXHVjNzQwIFx1YzIxOFx1YzVmNCAkYl97MX0sIGJfezJ9LCBcXGxkb3RzLCBiX3tufSRcdWM1ZDAgXHViMzAwXHVkNTU4XHVjNWVjLCAkYl97bn0kXHVjNzU4IFx1Y2Q1Y1x1YzE5Zlx1YWMxMlx1Yzc0NCBcdWFkNmNcdWQ1NThcdWM1ZWNcdWI3N2MuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWFjMDEgXHVjNzg1XHViODI1XHVjNzQwIFx1YzVlY1x1YjdlYyBcdWFjMWNcdWM3NTggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1Yjg1YyBcdWM3NzRcdWI4ZThcdWM1YjRcdWM4MzggXHVjNzg4XHViMmU0LiBcdWNjYWIgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNzU4IFx1YWMxY1x1YzIxOCAkdCRcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0KCQxIFxcbGUgdCBcXGxlIDEwMCQpLiBcdWIyZTRcdWM3NGMgXHVjOTA0XHViZDgwXHVkMTMwIFx1YWMwMVx1YWMwMVx1Yzc1OCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVhYzAxXHVhYzAxXHVjNzU4IFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWM3NTggXHVjY2FiIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDAgXHVjODE1XHVjMjE4ICRuJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQgKCQxIFxcbGUgbiBcXGxlIDEwMCQpLjxcL3A+XHJcblxyXG48cD5cdWI0NTAgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCAkbiRcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4ICRhXzEsIGFfMiwgXFxsZG90cywgYV9uJFx1Yzc3NCBcdWFjZjVcdWJjMzFcdWM3M2NcdWI4NWMgXHVhZDZjXHViZDg0XHViNDE4XHVjNWI0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNCAoJDEgXFxsZSBhX2kgXFxsZSAxMF57OX0kKS48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWFjMDFcdWFjMDFcdWM3NTggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YjljOFx1YjJlNCBcdWM4MTVcdWIyZjVcdWM3NDQgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcbiIsImhpbnQiOiI8cD5cdWNjYWIgXHViYzg4XHVjOWY4IFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWM1ZDBcdWMxMWMsICRiID0gWzIsIDQsIDUsIDcsIDhdJFx1Yzc0MCBcdWM4OGJcdWM3NDAgXHVjMjE4XHVjNWY0XHVjNzc0XHViMmU0LiAkYl97NX0gJmx0OyA4JFx1Yzc3OCBcdWM4OGJcdWM3NDAgXHVjMjE4XHVjNWY0ICRiJFx1YWMwMCBcdWM1YzZcdWM3NGNcdWM3NDQgXHVjOTlkXHViYTg1XHVkNTYwIFx1YzIxOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjQ1MCBcdWJjODhcdWM5ZjggXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YzVkMFx1YzExYywgJGIgPSBbMSwgMiwgMywgNF0kXHVhYzAwIFx1YWMwMFx1YjJhNVx1ZDU1OFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVjMTM4IFx1YmM4OFx1YzlmOCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNWQwXHVjMTFjLCAkYiA9IFsyXSRcdWFjMDAgXHVhYzAwXHViMmE1XHVkNTU4XHViMmU0LjxcL3A+XHJcbiIsIm9yaWdpbmFsIjoiMSIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiS29yZWFuIn0seyJwcm9ibGVtX2lkIjoiMzAyMzYiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJJbmNyZWFzaW5nIFNlcXVlbmNlIiwiZGVzY3JpcHRpb24iOiI8cD5Zb3UgYXJlIGdpdmVuIGEgc2VxdWVuY2UgJGFfezF9LCBhX3syfSwgXFxsZG90cywgYV97bn0kLiBBIHNlcXVlbmNlICRiX3sxfSwgYl97Mn0sIFxcbGRvdHMsIGJfe259JCBpcyBjYWxsZWQgPGVtPmdvb2Q8XC9lbT4sIGlmIGl0IHNhdGlzZmllcyBhbGwgb2YgdGhlIGZvbGxvd2luZyBjb25kaXRpb25zOjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPiRiX3tpfSQgaXMgYSBwb3NpdGl2ZSBpbnRlZ2VyIGZvciAkaSA9IDEsIDIsIFxcbGRvdHMsIG4kOzxcL2xpPlxyXG5cdDxsaT4kYl97aX0gXFxuZXEgYV97aX0kIGZvciAkaSA9IDEsIDIsIFxcbGRvdHMsIG4kOzxcL2xpPlxyXG5cdDxsaT4kYl97MX0gJmx0OyBiX3syfSAmbHQ7IFxcbGRvdHMgJmx0OyBiX3tufSQuPFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+RmluZCB0aGUgbWluaW11bSB2YWx1ZSBvZiAkYl97bn0kIGFtb25nIGFsbCBnb29kIHNlcXVlbmNlcyAkYl97MX0sIGJfezJ9LCBcXGxkb3RzLCBiX3tufSQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5FYWNoIHRlc3QgY29udGFpbnMgbXVsdGlwbGUgdGVzdCBjYXNlcy4gVGhlIGZpcnN0IGxpbmUgY29udGFpbnMgdGhlIG51bWJlciBvZiB0ZXN0IGNhc2VzICR0JCAoJDEgXFxsZSB0IFxcbGUgMTAwJCkuIFRoZSBkZXNjcmlwdGlvbiBvZiB0aGUgdGVzdCBjYXNlcyBmb2xsb3dzLjxcL3A+XHJcblxyXG48cD5UaGUgZmlyc3QgbGluZSBvZiBlYWNoIHRlc3QgY2FzZSBjb250YWlucyBhIHNpbmdsZSBpbnRlZ2VyICRuJCAoJDEgXFxsZSBuIFxcbGUgMTAwJCkuPFwvcD5cclxuXHJcbjxwPlRoZSBzZWNvbmQgbGluZSBvZiBlYWNoIHRlc3QgY2FzZSBjb250YWlucyAkbiQgaW50ZWdlcnMgJGFfMSwgYV8yLCBcXGxkb3RzLCBhX24kICgkMSBcXGxlIGFfaSBcXGxlIDEwXns5fSQpLjxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPkZvciBlYWNoIHRlc3QgY2FzZSwgcHJpbnQgYSBzaW5nbGUgaW50ZWdlcn4tLS0gdGhlIG1pbmltdW0gdmFsdWUgb2YgJGJfe259JCBhbW9uZyBhbGwgZ29vZCBzZXF1ZW5jZXMgJGIkLjxcL3A+XHJcbiIsImhpbnQiOiI8cD5JbiB0aGUgZmlyc3QgdGVzdCBjYXNlLCAkYiA9IFsyLCA0LCA1LCA3LCA4XSQgaXMgYSBnb29kIHNlcXVlbmNlLiBJdCBjYW4gYmUgcHJvdmVkIHRoYXQgdGhlcmUgaXMgbm8gZ29vZCAkYiQgd2l0aCAkYl97NX0gJmx0OyA4JC48XC9wPlxyXG5cclxuPHA+SW4gdGhlIHNlY29uZCB0ZXN0IGNhc2UsICRiID0gWzEsIDIsIDMsIDRdJCBpcyBhbiBvcHRpbWFsIGdvb2Qgc2VxdWVuY2UuPFwvcD5cclxuXHJcbjxwPkluIHRoZSB0aGlyZCB0ZXN0IGNhc2UsICRiID0gWzJdJCBpcyBhbiBvcHRpbWFsIGdvb2Qgc2VxdWVuY2UuPFwvcD5cclxuIiwib3JpZ2luYWwiOiIwIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIn1d