Logo
(追記) (追記ここまで)

30175번 - Sorted Adjacent Differences 스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 1024 MB74595578.571%

문제

You have array of $n$ numbers $a_{1}, a_{2}, \ldots, a_{n}$.

Rearrange these numbers to satisfy $|a_{1} - a_{2}| \le |a_{2} - a_{3}| \le \ldots \le |a_{n-1} - a_{n}|,ドル where $|x|$ denotes absolute value of $x$. It's always possible to find such rearrangement.

Note that all numbers in $a$ are not necessarily different. In other words, some numbers of $a$ may be same.

You have to answer independent $t$ test cases.

입력

The first line contains a single integer $t$ (1ドル \le t \le 10^{4}$) --- the number of test cases.

The first line of each test case contains single integer $n$ (3ドル \le n \le 10^{5}$) --- the length of array $a$. It is guaranteed that the sum of values of $n$ over all test cases in the input does not exceed 10ドル^{5}$.

The second line of each test case contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ ($-10^{9} \le a_{i} \le 10^{9}$).

출력

For each test case, print the rearranged version of array $a$ which satisfies given condition. If there are multiple valid rearrangements, print any of them.

제한

예제 입력 1

2
6
5 -2 4 8 6 5
4
8 1 4 2

예제 출력 1

5 5 4 6 8 -2
1 2 4 8

노트

In the first test case, after given rearrangement, $|a_{1} - a_{2}| = 0 \le |a_{2} - a_{3}| = 1 \le |a_{3} - a_{4}| = 2 \le |a_{4} - a_{5}| = 2 \le |a_{5} - a_{6}| = 10$. There are other possible answers like "5 4 5 6 -2 8".

In the second test case, after given rearrangement, $|a_{1} - a_{2}| = 1 \le |a_{2} - a_{3}| = 2 \le |a_{3} - a_{4}| = 4$. There are other possible answers like "2 4 8 1".

출처

Contest > Codeforces > Codeforces Round 633 (Div. 2) B번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /