Logo
(追記) (追記ここまで)

30169번 - Primes and Multiplication 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 1024 MB49353472.340%

문제

Let's introduce some definitions that will be needed later.

Let $prime(x)$ be the set of prime divisors of $x$. For example, $prime(140) = \{ 2, 5, 7 \},ドル $prime(169) = \{ 13 \}$.

Let $g(x, p)$ be the maximum possible integer $p^k$ where $k$ is an integer such that $x$ is divisible by $p^k$. For example:

  • $g(45, 3) = 9$ (45ドル$ is divisible by 3ドル^2=9$ but not divisible by 3ドル^3=27$),
  • $g(63, 7) = 7$ (63ドル$ is divisible by 7ドル^1=7$ but not divisible by 7ドル^2=49$).

Let $f(x, y)$ be the product of $g(y, p)$ for all $p$ in $prime(x)$. For example:

  • $f(30, 70) = g(70, 2) \cdot g(70, 3) \cdot g(70, 5) = 2^1 \cdot 3^0 \cdot 5^1 = 10,ドル
  • $f(525, 63) = g(63, 3) \cdot g(63, 5) \cdot g(63, 7) = 3^2 \cdot 5^0 \cdot 7^1 = 63$.

You have integers $x$ and $n$. Calculate $f(x, 1) \cdot f(x, 2) \cdot \ldots \cdot f(x, n) \bmod{(10^{9} + 7)}$.

입력

The only line contains integers $x$ and $n$ (2ドル \le x \le 10^{9},ドル 1ドル \le n \le 10^{18}$) --- the numbers used in formula.

출력

Print the answer.

제한

예제 입력 1

10 2

예제 출력 1

2

예제 입력 2

20190929 1605

예제 출력 2

363165664

예제 입력 3

947 987654321987654321

예제 출력 3

593574252

노트

In the first example, $f(10, 1) = g(1, 2) \cdot g(1, 5) = 1,ドル $f(10, 2) = g(2, 2) \cdot g(2, 5) = 2$.

In the second example, actual value of formula is approximately 1ドル.597 \cdot 10^{171}$. Make sure you print the answer modulo $(10^{9} + 7)$.

In the third example, be careful about overflow issue.

출처

Contest > Codeforces > Codeforces Round 589 (Div. 2) C번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /