| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 3 초 | 1024 MB | 43 | 7 | 6 | 25.000% |
You have given integers $a,ドル $b,ドル $p,ドル and $q$. Let $f(x) = \text{abs}(\text{sin}(\frac{p}{q} \pi x))$.
Find minimum possible integer $x$ that maximizes $f(x)$ where $a \le x \le b$.
Each test contains multiple test cases.
The first line contains the number of test cases $t$ (1ドル \le t \le 100$) --- the number of test cases.
The first line of each test case contains four integers $a,ドル $b,ドル $p,ドル and $q$ (0ドル \le a \le b \le 10^{9},ドル 1ドル \le p,ドル $q \le 10^{9}$).
Print the minimum possible integer $x$ for each test cases, separated by newline.
2 0 3 1 3 17 86 389 995
1 55
In the first test case, $f(0) = 0,ドル $f(1) = f(2) \approx 0.866,ドル $f(3) = 0$.
In the second test case, $f(55) \approx 0.999969,ドル which is the largest among all possible values.
Contest > Codeforces > Codeforces Round 566 (Div. 2) F번