문제
캥거루 세 마리가 사막에서 놀고 있다. 사막에는 수직선이 하나 있고, 캥거루는 서로 다른 한 좌표 위에 있다.
한 번 움직일 때, 바깥쪽의 두 캥거루 중 한 마리가 다른 두 캥거루 사이의 정수 좌표로 점프한다. 한 좌표 위에 있는 캥거루가 두 마리 이상일 수는 없다.
캥거루는 최대 몇 번 움직일 수 있을까?
출력
캥거루가 최대 몇 번 움직일 수 있는지 출력한다.
W3sicHJvYmxlbV9pZCI6IjI5NjUiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWNlYTVcdWFjNzBcdWI4ZTggXHVjMTM4XHViOWM4XHViOWFjIiwiZGVzY3JpcHRpb24iOiI8cD5cdWNlYTVcdWFjNzBcdWI4ZTggXHVjMTM4IFx1YjljOFx1YjlhY1x1YWMwMCBcdWMwYWNcdWI5YzlcdWM1ZDBcdWMxMWMgXHViMTgwXHVhY2UwIFx1Yzc4OFx1YjJlNC4gXHVjMGFjXHViOWM5XHVjNWQwXHViMjk0IFx1YzIxOFx1YzljMVx1YzEyMFx1Yzc3NCBcdWQ1NThcdWIwOTggXHVjNzg4XHVhY2UwLCBcdWNlYTVcdWFjNzBcdWI4ZThcdWIyOTQgXHVjMTFjXHViODVjIFx1YjJlNFx1Yjk3OCBcdWQ1NWMgXHVjODhjXHVkNDVjIFx1YzcwNFx1YzVkMCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1ZDU1YyBcdWJjODggXHVjNmMwXHVjOWMxXHVjNzdjIFx1YjU0YywgXHViYzE0XHVhZTY1XHVjYWJkXHVjNzU4IFx1YjQ1MCBcdWNlYTVcdWFjNzBcdWI4ZTggXHVjOTExIFx1ZDU1YyBcdWI5YzhcdWI5YWNcdWFjMDAgXHViMmU0XHViOTc4IFx1YjQ1MCBcdWNlYTVcdWFjNzBcdWI4ZTggXHVjMGFjXHVjNzc0XHVjNzU4IFx1YzgxNVx1YzIxOCBcdWM4OGNcdWQ0NWNcdWI4NWMgXHVjODEwXHVkNTA0XHVkNTVjXHViMmU0LiBcdWQ1NWMgXHVjODhjXHVkNDVjIFx1YzcwNFx1YzVkMCBcdWM3ODhcdWIyOTQgXHVjZWE1XHVhYzcwXHViOGU4XHVhYzAwIFx1YjQ1MCBcdWI5YzhcdWI5YWMgXHVjNzc0XHVjMGMxXHVjNzdjIFx1YzIxOFx1YjI5NCBcdWM1YzZcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1Y2VhNVx1YWM3MFx1YjhlOFx1YjI5NCBcdWNkNWNcdWIzMDAgXHViYTg3IFx1YmM4OCBcdWM2YzBcdWM5YzFcdWM3N2MgXHVjMjE4IFx1Yzc4OFx1Yzc0NFx1YWU0Yz88XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Y2NhYlx1YzlmOCBcdWM5MDRcdWM1ZDAgXHVjMTM4IFx1Y2VhNVx1YWM3MFx1YjhlOFx1Yzc1OCBcdWNkMDhcdWFlMzAgXHVjNzA0XHVjZTU4IEEsIEIsIENcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAoMCAmbHQ7IEEgJmx0OyBCICZsdDsgQyAmbHQ7IDEwMCk8XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWNlYTVcdWFjNzBcdWI4ZThcdWFjMDAgXHVjZDVjXHViMzAwIFx1YmE4NyBcdWJjODggXHVjNmMwXHVjOWMxXHVjNzdjIFx1YzIxOCBcdWM3ODhcdWIyOTRcdWM5YzAgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjAiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IktvcmVhbiJ9LHsicHJvYmxlbV9pZCI6IjI5NjUiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJTS09DSU1JUyIsImRlc2NyaXB0aW9uIjoiPHA+VGhyZWUga2FuZ2Fyb29zIGFyZSBwbGF5aW5nIGluIHRoZSBkZXNlcnQuIFRoZXkgYXJlIHBsYXlpbmcgb24gYSBudW1iZXIgbGluZSwgZWFjaCBvY2N1cHlpbmcgYSBkaWZmZXJlbnQgaW50ZWdlci4gSW4gYSBzaW5nbGUgbW92ZSwgb25lIG9mIHRoZSBvdXRlciBrYW5nYXJvb3MganVtcHMgaW50byB0aGUgc3BhY2UgYmV0d2VlbiB0aGUgb3RoZXIgdHdvLiBBdCBubyBwb2ludCBtYXkgdHdvIGthbmdhcm9vcyBvY2N1cHkgdGhlIHNhbWUgcG9zaXRpb24uJm5ic3A7PFwvcD5cclxuXHJcbjxwPkhlbHAgdGhlbSBwbGF5IGFzIGxvbmcgYXMgcG9zc2libGUuJm5ic3A7PFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaHJlZSBpbnRlZ2VycyBBLCBCIGFuZCBDICgwICZsdDsgQSAmbHQ7IEIgJmx0OyBDICZsdDsgMTAwKSwgdGhlIGluaXRpYWwgcG9zaXRpb25zIG9mIHRoZSBrYW5nYXJvb3MuJm5ic3A7PFwvcD5cclxuXHJcbjxwPiZuYnNwOzxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPk91dHB1dCB0aGUgbGFyZ2VzdCBudW1iZXIgb2YgbW92ZXMgdGhlIGthbmdhcm9vcyBjYW4gbWFrZS4mbmJzcDs8XC9wPlxyXG5cclxuPHA+Jm5ic3A7PFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCJ9XQ==