문제
은하는 수업 때 1ドル$부터 $N$까지 수의 합과 1ドル$부터 $N$까지 수의 세제곱의 합과 관련된 다음 공식을 배웠습니다.
- $(1 + 2 + \cdots + N)^2 = 1^3 + 2^3 + \cdots + N^3$
믿을 수 없었던 은하는 직접 코딩을 해서 검증해 보기로 했습니다. 1ドル$부터 $N$까지 수의 합과 그 수를 제곱한 수, 또 1ドル$부터 $N$까지 수의 세제곱의 합을 차례대로 출력하세요.
출력
세 줄을 출력하세요.
- 첫 줄에는 1ドル$부터 $N$까지 수의 합 1ドル+2+\cdots+N$을 출력하세요.
- 둘째 줄에는 1ドル$부터 $N$까지 수의 합을 제곱한 수 $(1+2+\cdots+N)^2$을 출력하세요.
- 셋째 줄에는 1ドル$부터 $N$까지 수의 세제곱의 합 1ドル^3+2^3+\cdots+N^3$을 출력하세요.
첫 줄에는 1ドル+2+3+4+5 = 15$를 출력합니다.
둘째 줄에는 $(1+2+3+4+5)^2 = 15^2 = 225$를 출력합니다.
셋째 줄에는 1ドル^3+2^3+3^3+4^3+5^3 =わ 1 +たす 8 +たす 27 +たす 64 +たす 125 =わ 225$를 출력합니다.
예제 출력 2
5050
25502500
25502500
첫 줄에는 1ドル+2+ \cdots +100 = 5,050円$을 출력합니다.
둘째 줄에는 $(1+2+\cdots+100)^2 = {5,050円}^2 = 25,502円,500円$을 출력합니다.
셋째 줄에는 1ドル^3+2^3+\cdots+100^3 = 1 + 8 + \cdots + 1,000円,000円 = 25,502円,500円$을 출력합니다.
노트
$a$의 제곱은 $a$를 두 번 곱한 수로, $a^2$으로 표현합니다. $a^2 = a \times a$입니다. 또한, $a$의 세제곱은 $a$를 세 번 곱한 수로, $a^3$으로 표현합니다. $a^3 = a \times a \times a$ 입니다.
W3sicHJvYmxlbV9pZCI6IjI4NzAxIiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVjMTM4XHVjODFjXHVhY2YxXHVjNzU4IFx1ZDU2OSIsImRlc2NyaXB0aW9uIjoiPHA+XHVjNzQwXHVkNTU4XHViMjk0IFx1YzIxOFx1YzVjNSBcdWI1NGMgJDEkXHViZDgwXHVkMTMwICROJFx1YWU0Y1x1YzljMCBcdWMyMThcdWM3NTggXHVkNTY5XHVhY2ZjICQxJFx1YmQ4MFx1ZDEzMCAkTiRcdWFlNGNcdWM5YzAgXHVjMjE4XHVjNzU4IFx1YzEzOFx1YzgxY1x1YWNmMVx1Yzc1OCBcdWQ1NjlcdWFjZmMgXHVhZDAwXHViODI4XHViNDFjIFx1YjJlNFx1Yzc0YyBcdWFjZjVcdWMyZGRcdWM3NDQgXHViYzMwXHVjNmUwXHVjMmI1XHViMmM4XHViMmU0LjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPiQoMSArIDIgKyBcXGNkb3RzICsgTileMiA9IDFeMyArIDJeMyArIFxcY2RvdHMgKyBOXjMkPFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+XHViYmZmXHVjNzQ0IFx1YzIxOCBcdWM1YzZcdWM1YzhcdWIzNTggXHVjNzQwXHVkNTU4XHViMjk0IFx1YzljMVx1YzgxMSBcdWNmNTRcdWI1MjlcdWM3NDQgXHVkNTc0XHVjMTFjIFx1YWM4MFx1Yzk5ZFx1ZDU3NCBcdWJjZjRcdWFlMzBcdWI4NWMgXHVkNTg4XHVjMmI1XHViMmM4XHViMmU0LiAkMSRcdWJkODBcdWQxMzAgJE4kXHVhZTRjXHVjOWMwIFx1YzIxOFx1Yzc1OCBcdWQ1NjlcdWFjZmMgXHVhZGY4IFx1YzIxOFx1Yjk3YyBcdWM4MWNcdWFjZjFcdWQ1NWMgXHVjMjE4LCBcdWI2MTAgJDEkXHViZDgwXHVkMTMwICROJFx1YWU0Y1x1YzljMCBcdWMyMThcdWM3NTggXHVjMTM4XHVjODFjXHVhY2YxXHVjNzU4IFx1ZDU2OVx1Yzc0NCBcdWNjMjhcdWI4NDBcdWIzMDBcdWI4NWMgXHVjZDljXHViODI1XHVkNTU4XHVjMTM4XHVjNjk0LjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHVjY2FiIFx1YzkwNFx1YzVkMCBcdWJiMzhcdWM4MWNcdWM3NTggXHVjODE1XHVjMjE4ICROJFx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5ZDFcdWIyYzhcdWIyZTQuICQoNSBcXGxlIE4gXFxsZSAxMDApJDxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPlx1YzEzOCBcdWM5MDRcdWM3NDQgXHVjZDljXHViODI1XHVkNTU4XHVjMTM4XHVjNjk0LjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPlx1Y2NhYiBcdWM5MDRcdWM1ZDBcdWIyOTQgJDEkXHViZDgwXHVkMTMwICROJFx1YWU0Y1x1YzljMCBcdWMyMThcdWM3NTggXHVkNTY5ICQxKzIrXFxjZG90cytOJFx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NThcdWMxMzhcdWM2OTQuPFwvbGk+XHJcblx0PGxpPlx1YjQ1OFx1YzlmOCBcdWM5MDRcdWM1ZDBcdWIyOTQgJDEkXHViZDgwXHVkMTMwICROJFx1YWU0Y1x1YzljMCBcdWMyMThcdWM3NTggXHVkNTY5XHVjNzQ0IFx1YzgxY1x1YWNmMVx1ZDU1YyBcdWMyMTggJCgxKzIrXFxjZG90cytOKV4yJFx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NThcdWMxMzhcdWM2OTQuPFwvbGk+XHJcblx0PGxpPlx1YzE0Ylx1YzlmOCBcdWM5MDRcdWM1ZDBcdWIyOTQgJDEkXHViZDgwXHVkMTMwICROJFx1YWU0Y1x1YzljMCBcdWMyMThcdWM3NTggXHVjMTM4XHVjODFjXHVhY2YxXHVjNzU4IFx1ZDU2OSAkMV4zKzJeMytcXGNkb3RzK05eMyRcdWM3NDQgXHVjZDljXHViODI1XHVkNTU4XHVjMTM4XHVjNjk0LjxcL2xpPlxyXG48XC91bD5cclxuIiwiaGludCI6IjxwPiRhJFx1Yzc1OCBcdWM4MWNcdWFjZjFcdWM3NDAgJGEkXHViOTdjIFx1YjQ1MCBcdWJjODggXHVhY2YxXHVkNTVjIFx1YzIxOFx1Yjg1YywgJGFeMiRcdWM3M2NcdWI4NWMgXHVkNDVjXHVkNjA0XHVkNTY5XHViMmM4XHViMmU0LiAkYV4yID0gYSBcXHRpbWVzIGEkXHVjNzg1XHViMmM4XHViMmU0LiBcdWI2MTBcdWQ1NWMsICRhJFx1Yzc1OCBcdWMxMzhcdWM4MWNcdWFjZjFcdWM3NDAgJGEkXHViOTdjIFx1YzEzOCBcdWJjODggXHVhY2YxXHVkNTVjIFx1YzIxOFx1Yjg1YywgJGFeMyRcdWM3M2NcdWI4NWMgXHVkNDVjXHVkNjA0XHVkNTY5XHViMmM4XHViMmU0LiAkYV4zID0gYSBcXHRpbWVzIGEgXFx0aW1lcyBhJCBcdWM3ODVcdWIyYzhcdWIyZTQuPFwvcD5cclxuIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4iLCJzYW1wbGVfZXhwbGFpbl8xIjoiPHA+XHVjY2FiIFx1YzkwNFx1YzVkMFx1YjI5NCAkMSsyKzMrNCs1ID0gMTUkXHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU2OVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViNDU4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkKDErMiszKzQrNSleMiA9IDE1XjIgPSAyMjUkXHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU2OVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVjMTRiXHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkMV4zKzJeMyszXjMrNF4zKzVeMyA9IDEgKyA4ICsgMjcgKyA2NCArIDEyNSA9IDIyNSRcdWI5N2MgXHVjZDljXHViODI1XHVkNTY5XHViMmM4XHViMmU0LjxcL3A+XHJcbiIsInNhbXBsZV9leHBsYWluXzIiOiI8cD5cdWNjYWIgXHVjOTA0XHVjNWQwXHViMjk0ICQxKzIrIFxcY2RvdHMgKzEwMCA9IDVcXCwwNTAkXHVjNzQ0IFx1Y2Q5Y1x1YjgyNVx1ZDU2OVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViNDU4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkKDErMitcXGNkb3RzKzEwMCleMiA9IHs1XFwsMDUwfV4yID0gMjVcXCw1MDJcXCw1MDAkXHVjNzQ0IFx1Y2Q5Y1x1YjgyNVx1ZDU2OVx1YjJjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVjMTRiXHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkMV4zKzJeMytcXGNkb3RzKzEwMF4zID0gMSArIDggKyBcXGNkb3RzICsgMVxcLDAwMFxcLDAwMCA9IDI1XFwsNTAyXFwsNTAwJFx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NjlcdWIyYzhcdWIyZTQuPFwvcD5cclxuIn0seyJwcm9ibGVtX2lkIjoiMjg3MDEiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJTdW0gb2YgQ3ViZXMiLCJkZXNjcmlwdGlvbiI6IjxwPkV1bmhhIGxlYXJuZWQgaW4gY2xhc3MgdGhlIGZvbGxvd2luZyBmb3JtdWxhIHJlbGF0ZWQgdG8gdGhlIHN1bSBvZiBudW1iZXJzIGZyb20gJDEkIHRvICROJCBhbmQgdGhlIHN1bSBvZiB0aGUgY3ViZXMgb2YgbnVtYmVycyBmcm9tICQxJCB0byAkTiQ6PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+JCgxICsgMiArIFxcY2RvdHMgKyBOKV4yID0gMV4zICsgMl4zICsgXFxjZG90cyArIE5eMyQ8XC9saT5cclxuPFwvdWw+XHJcblxyXG48cD5GaW5kaW5nIGl0IHVuYmVsaWV2YWJsZSwgRXVuaGEgZGVjaWRlZCB0byB2YWxpZGF0ZSBpdCBieSBjb2RpbmcgaGVyc2VsZi4gUGxlYXNlIG91dHB1dCB0aGUgc3VtIG9mIG51bWJlcnMgZnJvbSAkMSQgdG8gJE4kLCB0aGUgc3F1YXJlIG9mIHRoYXQgc3VtLCBhbmQgdGhlIHN1bSBvZiB0aGUgY3ViZXMgb2YgbnVtYmVycyBmcm9tICQxJCB0byAkTiQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBjb250YWlucyB0aGUgaW50ZWdlciAkTiQuICQoNSBcXGxlIE4gXFxsZSAxMDApJDxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPk91dHB1dCB0aHJlZSBsaW5lczo8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5PbiB0aGUgZmlyc3QgbGluZSwgb3V0cHV0IHRoZSBzdW0gb2YgdGhlIG51bWJlcnMgZnJvbSAkMSQgdG8gJE4kLCBpLmUuLCAkMSsyK1xcY2RvdHMrTiQuPFwvbGk+XHJcblx0PGxpPk9uIHRoZSBzZWNvbmQgbGluZSwgb3V0cHV0IHRoZSBzcXVhcmUgb2YgdGhlIHN1bSBvZiB0aGUgbnVtYmVycyBmcm9tICQxJCB0byAkTiQsIGkuZS4sICQoMSsyK1xcY2RvdHMrTileMiQuPFwvbGk+XHJcblx0PGxpPk9uIHRoZSB0aGlyZCBsaW5lLCBvdXRwdXQgdGhlIHN1bSBvZiB0aGUgY3ViZXMgb2YgdGhlIG51bWJlcnMgZnJvbSAkMSQgdG8gJE4kLCBpLmUuLCAkMV4zKzJeMytcXGNkb3RzK05eMyQuPFwvbGk+XHJcbjxcL3VsPlxyXG4iLCJoaW50IjoiPHA+VGhlIHNxdWFyZSBvZiAkYSQgaXMgdGhlIG51bWJlciBvYnRhaW5lZCBieSBtdWx0aXBseWluZyAkYSQgdHdpY2UsIGFuZCBpdCBpcyBleHByZXNzZWQgYXMgJGFeMiQuIFNvLCAkYV4yID0gYSBcXHRpbWVzIGEkLiBBbHNvLCB0aGUgY3ViZSBvZiAkYSQgaXMgdGhlIG51bWJlciBvYnRhaW5lZCBieSBtdWx0aXBseWluZyAkYSQgdGhyZWUgdGltZXMsIGFuZCBpdCBpcyBleHByZXNzZWQgYXMgJGFeMyQuIFRodXMsICRhXjMgPSBhIFxcdGltZXMgYSBcXHRpbWVzIGEkLjxcL3A+XHJcbiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCIsInNhbXBsZV9leHBsYWluXzEiOiI8cD5PbiB0aGUgZmlyc3QgbGluZSwgb3V0cHV0ICQxKzIrMys0KzUgPSAxNSQuPFwvcD5cclxuXHJcbjxwPk9uIHRoZSBzZWNvbmQgbGluZSwgb3V0cHV0ICQoMSsyKzMrNCs1KV4yID0gMTVeMiA9IDIyNSQuPFwvcD5cclxuXHJcbjxwPk9uIHRoZSB0aGlyZCBsaW5lLCBvdXRwdXQgJDFeMysyXjMrM14zKzReMys1XjMgPSAxICsgOCArIDI3ICsgNjQgKyAxMjUgPSAyMjUkLjxcL3A+XHJcbiIsInNhbXBsZV9leHBsYWluXzIiOiI8cD5PbiB0aGUgZmlyc3QgbGluZSwgb3V0cHV0ICQxKzIrIFxcY2RvdHMgKzEwMCA9IDVcXCwwNTAkLjxcL3A+XHJcblxyXG48cD5PbiB0aGUgc2Vjb25kIGxpbmUsIG91dHB1dCAkKDErMitcXGNkb3RzKzEwMCleMiA9IHs1XFwsMDUwfV4yID0gMjVcXCw1MDJcXCw1MDAkLjxcL3A+XHJcblxyXG48cD5PbiB0aGUgdGhpcmQgbGluZSwgb3V0cHV0ICQxXjMrMl4zK1xcY2RvdHMrMTAwXjMgPSAxICsgOCArIFxcY2RvdHMgKyAxXFwsMDAwXFwsMDAwID0gMjVcXCw1MDJcXCw1MDAkLjxcL3A+XHJcbiJ9XQ==