Logo
(追記) (追記ここまで)

24862번 - Lots of Parabolas 스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 512 MB2111100.000%

문제

On a plane there is a set of parabolas given by equations in the form $y = a\cdot x^2 + b\cdot x + c$.

Let's consider a point to be located inside a parabola if it located above the parabola in case of positive coefficient $a,ドル or below the parabola in case of negative $a$.

On this figure, the point $P$ is located inside both parabolas, the point $Q$ is inside one of them, and the point $R$ is inside none of them.

You need to find any point that is located inside all parabolas. It is guaranteed that such point exists.

입력

The first line contains a single integer $n$ (1ドル \leq n \leq 100,000円$) --- the number of parabolas.

Each of the next $n$ lines contains three integers $a,ドル $b,ドル $c$ ($|a|, |b|, |c| \leq 10^9$; $a \neq 0$), describing a parabola $y = a\cdot x^2 + b\cdot x + c$.

출력

Print two real numbers $x$ and $y$ --- coordinates of a point located inside all parabolas.

The answer is considered correct if there exists a point at distance at most 10ドル^{-6}$ from the printed one, which is located strictly inside all parabolas.

제한

예제 입력 1

4
1 2 3
1 -3 -5
-1 3 4
-2 4 6

예제 출력 1

0.24999999632501932 4.124999990812548

힌트

출처

Olympiad > Russian Olympiad in Informatics > Russia Team High School Programming Contest > Russia Team High School Programming Contest 2021 H번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /