Logo
(追記) (追記ここまで)

24670번 - Mountains 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
1 초 256 MB86624667.647%

문제

Damir is climbing mountains. The mountain map can be represented as an $n \times m$ grid, in which a cell at the intersection of row $i$ and column $j$ is denoted as $(i, j)$. The height of the peak in cell $(i, j)$ is equal to a non-negative integer $a_{i, j}$. Damir starts his journey on the peak in cell $(1, 1)$ aiming to reach the peak in cell $(n, m)$. If Damir is in on the peak in cell $(i, j),ドル then he can go either to the peak in cell $(i + 1, j)$ or to the peak in cell $(i, j + 1)$. Of course, he cannot go outside the boundaries of the map. To make the journey more interesting, he chooses the path with the largest sum of peak heights (kind of total climb).

Damir loves combinatorics, and he became curious: how many $n \times m$ maps are there such that the sum of peak heights on his path does not exceed $k$? As the answer may be large, find it modulo 10ドル^9 + 7$.

입력

The only line of input contains three integers, $n,ドル $m,ドル and $k$ (1ドル \le n, m, k \le 100$).

출력

Print the answer modulo 10ドル^9 + 7$.

제한

예제 입력 1

1 1 1

예제 출력 1

2

예제 입력 2

2 2 2

예제 출력 2

20

예제 입력 3

2 3 4

예제 출력 3

490

힌트

출처

Camp > Petrozavodsk Programming Camp > Winter 2022 > Day 3: Kazakhstan Contest E번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /