문제
N명의 학생이 참여하여 세 번의 시험을 치렀다. N명의 학생들은 세 번의 시험에 모두 응시하였다. 조교는 각각의 시험에서 같은 등수의 학생이 한 명도 없도록 성적을 매겼다.
A라는 학생이 B라는 학생보다 세 번의 시험에서 모두 성적이 좋다면, A가 B보다 '대단하다'고 한다. 또, C라는 학생보다 '대단한' 학생이 한 명도 없으면, C를 '굉장하다'고 한다.
세 번의 시험에서 각 학생의 성적이 주어졌을 때, '굉장한' 학생의 수를 구하는 프로그램을 작성하시오.
W3sicHJvYmxlbV9pZCI6IjIzMzYiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWFkNDlcdWM3YTVcdWQ1NWMgXHVkNTU5XHVjMGRkIiwiZGVzY3JpcHRpb24iOiI8cD5OXHViYTg1XHVjNzU4IFx1ZDU1OVx1YzBkZFx1Yzc3NCBcdWNjMzhcdWM1ZWNcdWQ1NThcdWM1ZWMgXHVjMTM4IFx1YmM4OFx1Yzc1OCBcdWMyZGNcdWQ1ZDhcdWM3NDQgXHVjZTU4XHViODAwXHViMmU0LiBOXHViYTg1XHVjNzU4IFx1ZDU1OVx1YzBkZFx1YjRlNFx1Yzc0MCBcdWMxMzggXHViYzg4XHVjNzU4IFx1YzJkY1x1ZDVkOFx1YzVkMCBcdWJhYThcdWI0NTAgXHVjNzUxXHVjMmRjXHVkNTU4XHVjNjAwXHViMmU0LiBcdWM4NzBcdWFkNTBcdWIyOTQgXHVhYzAxXHVhYzAxXHVjNzU4IFx1YzJkY1x1ZDVkOFx1YzVkMFx1YzExYyBcdWFjMTlcdWM3NDAgXHViNGYxXHVjMjE4XHVjNzU4IFx1ZDU1OVx1YzBkZFx1Yzc3NCBcdWQ1NWMgXHViYTg1XHViM2M0IFx1YzVjNlx1YjNjNFx1Yjg1ZCBcdWMxMzFcdWM4MDFcdWM3NDQgXHViOWU0XHVhY2JjXHViMmU0LjxcL3A+XHJcblxyXG48cD5BXHViNzdjXHViMjk0IFx1ZDU1OVx1YzBkZFx1Yzc3NCBCXHViNzdjXHViMjk0IFx1ZDU1OVx1YzBkZFx1YmNmNFx1YjJlNCBcdWMxMzggXHViYzg4XHVjNzU4IFx1YzJkY1x1ZDVkOFx1YzVkMFx1YzExYyBcdWJhYThcdWI0NTAgXHVjMTMxXHVjODAxXHVjNzc0IFx1Yzg4Ylx1YjJlNFx1YmE3NCwgQVx1YWMwMCBCXHViY2Y0XHViMmU0ICYjMzk7XHViMzAwXHViMmU4XHVkNTU4XHViMmU0JiMzOTtcdWFjZTAgXHVkNTVjXHViMmU0LiBcdWI2MTAsIENcdWI3N2NcdWIyOTQgXHVkNTU5XHVjMGRkXHViY2Y0XHViMmU0ICYjMzk7XHViMzAwXHViMmU4XHVkNTVjJiMzOTsgXHVkNTU5XHVjMGRkXHVjNzc0IFx1ZDU1YyBcdWJhODVcdWIzYzQgXHVjNWM2XHVjNzNjXHViYTc0LCBDXHViOTdjICYjMzk7XHVhZDQ5XHVjN2E1XHVkNTU4XHViMmU0JiMzOTtcdWFjZTAgXHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWMxMzggXHViYzg4XHVjNzU4IFx1YzJkY1x1ZDVkOFx1YzVkMFx1YzExYyBcdWFjMDEgXHVkNTU5XHVjMGRkXHVjNzU4IFx1YzEzMVx1YzgwMVx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM4NGNcdWM3NDQgXHViNTRjLCAmIzM5O1x1YWQ0OVx1YzdhNVx1ZDU1YyYjMzk7IFx1ZDU1OVx1YzBkZFx1Yzc1OCBcdWMyMThcdWI5N2MgXHVhZDZjXHVkNTU4XHViMjk0IFx1ZDUwNFx1Yjg1Y1x1YWRmOFx1YjdhOFx1Yzc0NCBcdWM3OTFcdWMxMzFcdWQ1NThcdWMyZGNcdWM2MjQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWNjYWJcdWM5ZjggXHVjOTA0XHVjNWQwIE4oMSAmbGU7IE4gJmxlOyA1MDAsMDAwKVx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1YjJlNFx1Yzc0YyBcdWMxMzggXHVhYzFjXHVjNzU4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWFjMDEgXHVjMmRjXHVkNWQ4XHVjNWQwXHVjMTFjIDFcdWI0ZjFcdWM3NzggXHVkNTU5XHVjMGRkXHViZDgwXHVkMTMwIE5cdWI0ZjFcdWM3NzggXHVkNTU5XHVjMGRkXHVjNzc0IFx1YzIxY1x1YzExY1x1YjMwMFx1Yjg1YyBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1ZDU1OVx1YzBkZFx1Yzc1OCBcdWJjODhcdWQ2MzhcdWIyOTQgMVx1YmQ4MFx1ZDEzMCBOXHVhZTRjXHVjOWMwIFx1YjllNFx1YWNhOFx1YzgzOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCAmIzM5O1x1YWQ0OVx1YzdhNVx1ZDU1YyYjMzk7IFx1ZDU1OVx1YzBkZFx1Yzc1OCBcdWMyMThcdWI5N2MgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjAiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IktvcmVhbiJ9LHsicHJvYmxlbV9pZCI6IjIzMzYiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJUZWFtIFNlbGVjdGlvbiIsImRlc2NyaXB0aW9uIjoiPHA+VGhlIEludGVycGVuaW5zdWxhciBPbHltcGlhZCBpbiBJbmZvcm1hdGljcyBpcyBjb21pbmcgYW5kIHRoZSBsZWFkZXJzIG9mIHRoZSBCYWxrYW4gUGVuaW5zdWxhIFRlYW0gaGF2ZSB0byBjaG9vc2UgdGhlIGJlc3QgY29udGVzdGFudHMgb24gdGhlIEJhbGthbnMuIEZvcnR1bmF0ZWx5LCB0aGUgbGVhZGVycyBjb3VsZCBjaG9vc2UgdGhlIG1lbWJlcnMgb2YgdGhlIHRlYW0gYW1vbmcgTiB2ZXJ5IGdvb2QgY29udGVzdGFudHMsIG51bWJlcmVkIGZyb20gMSB0byBOICgzICZsZTsgTiAmbGU7IDUwMDAwMCkuIEluIG9yZGVyIHRvIHNlbGVjdCB0aGUgYmVzdCBjb250ZXN0YW50cyB0aGUgbGVhZGVycyBvcmdhbml6ZWQgdGhyZWUgY29tcGV0aXRpb25zLiBFYWNoIG9mIHRoZSBOIGNvbnRlc3RhbnRzIHRvb2sgcGFydCBpbiBhbGwgdGhyZWUgY29tcGV0aXRpb25zIGFuZCB0aGVyZSB3ZXJlIG5vIHR3byBjb250ZXN0YW50cyB3aXRoIGVxdWFsIHJlc3VsdHMgb24gYW55IG9mIHRoZSBjb21wZXRpdGlvbnMuIFdlIHNheSB0aGF0IGNvbnRlc3RhbnQgXHUwNDEwIGlzIGJldHRlciB0aGFuIGFub3RoZXIgY29udGVzdGFudCBcdTA0MTIgd2hlbiBcdTA0MTAgaXMgcmFua2VkIGJlZm9yZSBcdTA0MTIgaW4gYWxsIG9mIHRoZSBjb21wZXRpdGlvbnMuIEEgY29udGVzdGFudCBBIGlzIHNhaWQgdG8gYmUgZXhjZWxsZW50IGlmIG5vIG90aGVyIGNvbnRlc3RhbnQgaXMgYmV0dGVyIHRoYW4gQS4gVGhlIGxlYWRlcnMgb2YgdGhlIEJhbGthbiBQZW5pbnN1bGEgVGVhbSB3b3VsZCBsaWtlIHRvIGtub3cgdGhlIG51bWJlciBvZiBleGNlbGxlbnQgY29udGVzdGFudHMuPFwvcD5cclxuXHJcbjxwPldyaXRlIGEgcHJvZ3JhbSBuYW1lZCBURUFNLCB3aGljaCBmb3IgZ2l2ZW4gTiBhbmQgdGhlIHRocmVlIGNvbXBldGl0aW9ucyByZXN1bHRzLCBjb21wdXRlcyB0aGUgbnVtYmVyIG9mIGV4Y2VsbGVudCBjb250ZXN0YW50cy48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlRoZSBpbnB1dCBkYXRhIGFyZSBnaXZlbiBvbiB0aGUgc3RhbmRhcmQgaW5wdXQgYXMgZm91ciBsaW5lcy4gVGhlIGZpcnN0IGxpbmUgY29udGFpbnMgdGhlIG51bWJlciBOLiBUaGUgbmV4dCB0aHJlZSBsaW5lcyBzaG93IHRoZSByYW5raW5ncyBmb3IgdGhlIHRocmVlIGNvbXBldGl0aW9ucy4gRWFjaCBvZiB0aGVzZSBsaW5lcyBjb250YWlucyB0aGUgaWRlbnRpZmljYXRpb24gbnVtYmVycyBvZiB0aGUgY29udGVzdGFudHMsIHNlcGFyYXRlZCBieSBzaW5nbGUgc3BhY2VzLCBpbiB0aGUgb3JkZXIgb2YgdGhlaXIgcmFua2luZyBmcm9tIGZpcnN0IHRvIGxhc3QgcGxhY2UuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+VGhlIHN0YW5kYXJkIG91dHB1dCBzaG91bGQgY29udGFpbiBvbmUgbGluZSB3aXRoIGEgc2luZ2xlIG51bWJlciB3cml0dGVuIG9uIGl0OiB0aGUgbnVtYmVyIG9mIHRoZSBleGNlbGxlbnQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCJ9XQ==