| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 2 초 | 1024 MB | 69 | 21 | 18 | 32.727% |
In a far away kingdom, there are $N$ cities numbered between 0ドル$ and $N - 1$. The cities are connected by $N - 1$ two-way roads. Each road has the same length, and connects exactly two cities, such that there is a unique path between any pair of cities.
For any two cities $A$ and $B,ドル denote by $L(A, B)$ the number of roads of this unique path between cities $A$ and $B$. Given an integer $K,ドル for how many pairs of cities $A, B$ is $L(A, B) = K$?
Let the kingdom have $N = 5$ cities, connected by roads as in the figure below:
The following 4 pairs have a single road between them: $(0, 1), (0, 2), (0, 4), (3, 4)$.
The following 4 pairs have two roads between them: $(0, 3), (1, 2), (1, 4), (2, 4)$.
The following 2 pairs have three roads between them: $(1, 3), (2, 3)$.
This means that if for $K = 1, 2, 3,ドル the answers would be 4,ドル 4, 2$ respectively. Your task is to compute how many pairs of cities have exactly $K$ roads between them. You will implement the function paths(N, K, F, T).
paths(N, K, F, T) - this function will be called exactly once by the judge.
N: the number of cities in the kingdom.K: the number of roads between pairs of cities we are interested in.F: an array with $N - 1$ elements. F[i] (0ドル \le i < N$) contains one of the cities that the $i$:th road connects.T: an array with $N - 1$ elements. T[i] (0ドル \le i < N$) contains the other city that the $i$:th road connects.A code skeleton containing the function to be implemented, together with a sample grader, can be found at attachments.zip.
The sample judge reads input in the following format:
N KF[0] F[1] .. F[N - 2]T[0] T[1] .. T[N - 2]The sample judge will write a single line with the return value of paths(N, K, F, T).
5 2 0 0 0 3 1 2 4 4
4
Olympiad > Swedish Olympiad in Informatics > 2016 > KATT1 D번
C++17, Java 8, C++14, Java 8 (OpenJDK), Java 11, C++20, Java 15, C++14 (Clang), C++17 (Clang), C++20 (Clang)