| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 1 초 | 1024 MB | 126 | 70 | 49 | 48.515% |
Alice and Bob like playing games. Lately, they've been playing a game where Alice rolls $N$ dice and Bob pays her a dollar amount equal to the product of the numbers rolled on the $N$ dice; however, due to the lack of required skill, Alice and Bob have gotten bored.
To spice things up, they decide to use a custom set of dice. Specifically, Alice has $N$ blank 6ドル$-sided dice and she gets to paint pips on them. She has enough paint to paint $M$ pips. Subject to this constraint, she can paint the dice however she wants; for example, she may paint more than 6ドル$ pips on one side of a die. Note that she can choose to paint 0ドル$ pips on a side; if any of the rolled numbers is 0ドル,ドル the product is 0ドル$.
Assuming Alice paints the dice optimally, what is the expected value of her winnings in this game?
The only line of input contains two space-separated integers, $N$ (1ドル \leq N \leq 20$) and $M$ (1ドル \leq M \leq 100$): the number of dice in the game and the maximum number of pips Alice may paint in total, respectively.
Output a single real number, Alice's expected winnings. Your answer is considered correct if its absolute or relative error is at most 10ドル^{-6}$.
2 2
0.027777777778
1 6
1.000000000000
2 3
0.055555555556
2 1
0.000000000000
In the first sample case, the best Alice can do is to put one pip on each die. This gives her an expected value of 1ドル/36$.
In the second sample case, one optimal strategy for Alice is to put a pip on each side of the die. No matter what she rolls, she receives a payout of 1ドル$.
In the final sample case, Alice can only paint 1ドル$ pip, so no matter what she does, she will always receive a payout of 0ドル$.
University > UT Invitational Programming Contest > UT Invitational Programming Contest 2019 A번