| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 3 초 | 512 MB | 133 | 20 | 7 | 6.731% |
You are given two sequences $a_0, a_1, \ldots, a_n$ and $b_0, b_1, \ldots, b_n$. You want to compute a new sequence $c_0, c_1, \ldots, c_n$ such that $$c_k = \left(\sum_{i = 0}^k {k \choose i} a_i b_{k-i}\right) \bmod 2^{32}\text{.}$$
Here, ${k \choose i} = \frac{k!}{i! (k - i)!}$ are binomial coefficients.
Output $c_0, c_1, \ldots, c_n$.
The first line contains an integer $n$ (1ドル \leq n \leq 2 \cdot 10^5$).
The second line contains $n + 1$ integers $a_0, a_1, \ldots, a_n$ (0ドル\leq a_i < 2^{32}$).
The third line contains $n + 1$ integers $b_0, b_1, \ldots, b_n$ (0ドル \leq b_i < 2^{32}$).
Output one line with $n + 1$ integers: $c_0, c_1, \ldots, c_n$.
5 0 1 2 3 4 5 6 7 8 9 10 11
0 6 26 84 240 640