Logo
(追記) (追記ここまで)

18972번 - Gnutella Chessmaster 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
3 초 512 MB20141266.667%

문제

Alexander has recently achieved ridiculously high rating on Chessforces competition website. Alexander's coach challenged him with a difficult problem so that Alexander could truly prove his mettle.

Consider an $n \times n$ chessboard. A bishop is a chess piece that attacks all positions sharing a diagonal with it. A non-attacking configuration is an arrangement of several bishops on the chessboard such that no two bishops occupy the same position, and no bishop attacks any other.

Alexander has to count the number of non-attacking bishop configurations with exactly $k$ bishops for each $k$ from 1ドル$ to 2ドルn - 1$. Since the answers can be large, each number has to be computed modulo a completely random number 998ドル,244円,353円$.

입력

The first line contains a single integer $n$ (1ドル \leq n \leq 10^5$).

출력

Print 2ドルn - 1$ integers. The $k$-th of these integers should be the number (modulo 998ドル,244円,353円$) of non-attacking configurations of exactly $k$ bishops on an $n \times n$ chessboard.

제한

예제 입력 1

2

예제 출력 1

4 4 0

예제 입력 2

3

예제 출력 2

9 26 26 8 0

예제 입력 3

10

예제 출력 3

100 4380 110960 1809464 20014112 154215760 837543200 214861037 625796024 941559921 770927213 837612209 756883449 146369278 295974400 17275136 246784 1024 0

힌트

출처

Camp > Petrozavodsk Programming Camp > Summer 2018 > Day 3: MIPT Contest G번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /