| 시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
|---|---|---|---|---|---|
| 2 초 | 256 MB | 74 | 30 | 28 | 40.580% |
Consider all ordered partitions of a positive integer $n$ into $m$ positive summands: $n = a_1 + a_2 + \ldots + a_m$. Let $f(a_1, a_2, \ldots, a_m)$ be the number of different integers among $a_1, a_2, \ldots, a_m$. Find the sum of $f(a_1, a_2, \ldots, a_m)$ over all ordered partitions of the number $n,ドル and print it modulo 998ドル,244円,353円$.
Two ordered partitions $a_1 + a_2 + \ldots + a_m = n$ and $b_1 + b_2 + \ldots + b_m = n$ are considered different if there is an index $i \in \{1, 2, \ldots, m\}$ such that $a_i \neq b_i$.
The only line of input contains two integers $n$ and $m$ (1ドル \le n \le 10^{18},ドル 1ドル \le m \le 500,ドル $m \le n$).
Print the answer modulo 998ドル,244円,353円$.
10 2
17
20 4
3413