문제
1부터 N까지의 수를 이어서 쓰면 다음과 같이 새로운 하나의 수를 얻을 수 있다.
1234567891011121314151617181920212223...
이렇게 만들어진 새로운 수는 몇 자리 수일까? 이 수의 자릿수를 구하는 프로그램을 작성하시오.
W3sicHJvYmxlbV9pZCI6IjE3NDgiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWMyMTggXHVjNzc0XHVjNWI0IFx1YzRmMFx1YWUzMCAxIiwiZGVzY3JpcHRpb24iOiI8cD4xXHViZDgwXHVkMTMwIE5cdWFlNGNcdWM5YzBcdWM3NTggXHVjMjE4XHViOTdjIFx1Yzc3NFx1YzViNFx1YzExYyBcdWM0ZjBcdWJhNzQgXHViMmU0XHVjNzRjXHVhY2ZjIFx1YWMxOVx1Yzc3NCBcdWMwYzhcdWI4NWNcdWM2YjQgXHVkNTU4XHViMDk4XHVjNzU4IFx1YzIxOFx1Yjk3YyBcdWM1YmJcdWM3NDQgXHVjMjE4IFx1Yzc4OFx1YjJlNC48XC9wPlxyXG5cclxuPGJsb2NrcXVvdGU+XHJcbjxwPjEyMzQ1Njc4OTEwMTExMjEzMTQxNTE2MTcxODE5MjAyMTIyMjMuLi48XC9wPlxyXG48XC9ibG9ja3F1b3RlPlxyXG5cclxuPHA+XHVjNzc0XHViODA3XHVhYzhjIFx1YjljY1x1YjRlNFx1YzViNFx1YzljNCBcdWMwYzhcdWI4NWNcdWM2YjQgXHVjMjE4XHViMjk0IFx1YmE4NyBcdWM3OTBcdWI5YWMgXHVjMjE4XHVjNzdjXHVhZTRjPyBcdWM3NzQgXHVjMjE4XHVjNzU4IFx1Yzc5MFx1YjliZlx1YzIxOFx1Yjk3YyBcdWFkNmNcdWQ1NThcdWIyOTQgXHVkNTA0XHViODVjXHVhZGY4XHViN2E4XHVjNzQ0IFx1Yzc5MVx1YzEzMVx1ZDU1OFx1YzJkY1x1YzYyNC48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Y2NhYlx1YzlmOCBcdWM5MDRcdWM1ZDAgTigxICZsZTsgTiAmbGU7IDEwMCwwMDAsMDAwKVx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCBcdWMwYzhcdWI4NWNcdWM2YjQgXHVjMjE4XHVjNzU4IFx1Yzc5MFx1YjliZlx1YzIxOFx1Yjk3YyBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiS29yZWFuIn0seyJwcm9ibGVtX2lkIjoiMTc0OCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6ImJyb2oiLCJkZXNjcmlwdGlvbiI6IjxwPkEgc2VxdWVuY2Ugb2YgZGlnaXRzIGlzIG9idGFpbmVkIGJ5IHdyaXRpbmcgZG93biBkZWNpbWFsIHJlcHJlc2VudGF0aW9ucyBvZiBhbGwgaW50ZWdlcnMgc3RhcnRpbmcgd2l0aCAxIGFuZCBjb250aW51aW5nIHVwIHRvIGEgY2VydGFpbiBudW1iZXIgTiBjb25zZWN1dGl2ZWx5IGxpa2UgdGhpczo8XC9wPlxyXG5cclxuPHAgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXI7XCI+MTIzNDU2Nzg5MTAxMTEyMTMxNDE1MTYxNzE4MTkyMDIxMjIgLi4uIGV0Yy48XC9wPlxyXG5cclxuPHA+V3JpdGUgYSBwcm9ncmFtIHRoYXQgd2lsbCBjb21wdXRlIHRoZSBudW1iZXIgb2YgZGlnaXRzIGluIHN1Y2ggYSBzZXF1ZW5jZS48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlRoZSBmaXJzdCBhbmQgb25seSBsaW5lIG9mIGlucHV0IGNvbnRhaW5zIGFuIGludGVnZXIgTiwgMSAmbGU7IE4gJmxlOyAxMDAsMDAwLDAwMC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5UaGUgZmlyc3QgYW5kIG9ubHkgbGluZSBvZiBvdXRwdXQgc2hvdWxkIGNvbnRhaW4gdGhlIG51bWJlciBvZiBkaWdpdHMgaW4gYSBzZXF1ZW5jZSBkZXRlcm1pbmVkIGJ5IHRoZSBudW1iZXIgZ2l2ZW4gaW4gdGhlIGlucHV0LjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjEiLCJodG1sX3RpdGxlIjoiMCIsInByb2JsZW1fbGFuZ190Y29kZSI6IkVuZ2xpc2gifV0=