Logo
(追記) (追記ここまで)

16665번 - Fractions 스페셜 저지다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 512 MB111584956.322%

문제

You are given a positive integer \(n\).

Find a sequence of fractions \(a_i\), \(b_i\) \(i = 1 \dots k\) (where \(a_i\) and \(b_i\) are positive integers) for some \(k\) such that

\[\begin{cases} b_i \text{ divides } n, 1 < b_i < n \text{ for } i = 1 \dots k \\ 1 \le a_i < b_i, \text{ for } i = 1 \dots k \\ \sum_{i=1}^{k}{\frac{a_i}{b_i}} = 1 - \frac{1}{n} \end{cases}\]

입력

The input consists of a single integer \(n\) (\(2 \le n \le 10^9).

출력

In the first line print “YES” if there exists such a sequence of fractions or “NO” otherwise.

If there exists such a sequence, next lines should contain a description of the sequence in the following format.

The second line should contain integer \(k\) (\(1 \le k \le 100 000\)) — the number of elements in the sequence. It is guaranteed that if such a sequence exists, then there exists a sequence of length at most \(100 000\). Next \(k\) lines should contain fractions of the sequence with two integers \(a_i\) and \(b_i\) on each line.

제한

예제 입력 1

2

예제 출력 1

NO

예제 입력 2

6

예제 출력 2

YES
2
1 2
1 3

노트

In the second example there is a sequence \(\frac{1}{2}\), \(\frac{1}{3}\) such that \(\frac{1}{2}+\frac{1}{3} = 1 - \frac{1}{6}\).

출처

ICPC > Regionals > Northern Eurasia > Northern Eurasia Finals > NERC 2018 F번

(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /