Logo
(追記) (追記ここまで)

13868번 - Counting Self-Rotating Subsets 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 512 MB58403268.085%

문제

A set of points in the plane is self-rotating if there is a point P, the center, and an angle α, expressed in degrees, where 0 < α < 360, such that the rotation of the plane, with center P and angle α, maps every point in the set to some point also in the set.

You are given a set of N distinct points, all having integer coordinates. Find the number of distinct subsets of size 1, 2, . . . , N that are self-rotating. Two subsets are considered distinct if one contains a point that the other does not contain.

입력

The first line of the input contains one integer N representing the number of points in the input set (1 ≤ N ≤ 1000). Each of the following N lines describes a different point of the set, and contains two integers X and Y giving its coordinates in a Cartesian coordinate system (−109 ≤ X, Y ≤ 109 ). All points in the input set are distinct.

출력

Output a single line containing N integers S1, S2, . . . , SN . For i = 1, 2, . . . , N the integer Si must be the number of subsets of i points of the input set that are self-rotating. Since these numbers can be very big, output them modulo 109 + 7.

제한

예제 입력 1

3
1 1
2 2
1 0

예제 출력 1

3 3 0

예제 입력 2

7
-2 0
-1 1
0 2
0 0
2 0
1 -1
0 -2

예제 출력 2

7 21 5 5 3 1 1

예제 입력 3

1
-1000000000 1000000000

예제 출력 3

1

힌트

출처

ICPC > Regionals > Latin America > Latin America Regional Contests > Latin America Regional Contests 2016 C번

  • 문제를 만든 사람: Pablo Ariel Heiber
(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /