Logo
(追記) (追記ここまで)

12001번 - Load Balancing (Bronze) 다국어

시간 제한메모리 제한제출정답맞힌 사람정답 비율
2 초 512 MB129347740238.286%

문제

Farmer John's \(N\) cows are each standing at distinct locations \((x_1, y_1) \ldots (x_n, y_n)\) on his two-dimensional farm (\(1 \leq N \leq 100\), and the \(x_i\)'s and \(y_i\)'s are positive odd integers of size at most \(B\)). FJ wants to partition his field by building a long (effectively infinite-length) north-south fence with equation \(x=a\) (\(a\) will be an even integer, thus ensuring that he does not build the fence through the position of any cow). He also wants to build a long (effectively infinite-length) east-west fence with equation \(y=b\), where \(b\) is an even integer. These two fences cross at the point \((a,b)\), and together they partition his field into four regions.

FJ wants to choose \(a\) and \(b\) so that the cows appearing in the four resulting regions are reasonably "balanced", with no region containing too many cows. Letting \(M\) be the maximum number of cows appearing in one of the four regions, FJ wants to make \(M\) as small as possible. Please help him determine this smallest possible value for \(M\).

For the first five test cases, \(B\) is guaranteed to be at most 100. In all test cases, \(B\) is guaranteed to be at most 1,000,000.

입력

The first line of the input contains two integers, \(N\) and \(B\). The next \(n\) lines each contain the location of a single cow, specifying its \(x\) and \(y\) coordinates.

출력

You should output the smallest possible value of \(M\) that FJ can achieve by positioning his fences optimally.

제한

예제 입력 1

7 10
7 3
5 5
9 7
3 1
7 7
5 3
9 1

예제 출력 1

2

힌트

출처

Olympiad > USA Computing Olympiad > 2015-2016 Season > USACO February 2016 Contest > Bronze 3번

  • 데이터를 추가한 사람: rdd6584
(追記) (追記ここまで)

출처

대학교 대회

  • 사업자 등록 번호: 541-88-00682
  • 대표자명: 최백준
  • 주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호
  • 전화번호: 02-521-0487 (이메일로 연락 주세요)
  • 이메일: contacts@startlink.io
  • 통신판매신고번호: 제 2017-서울서초-2193 호

AltStyle によって変換されたページ (->オリジナル) /