Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Integrals / Substitution Rule for Definite Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5.8 : Substitution Rule for Definite Integrals

Evaluate each of the following integrals, if possible. If it is not possible clearly explain why it is not possible to evaluate the integral.

  1. \( \displaystyle \int_{0}^{1}{{3\left( {4x + {x^4}} \right){{\left( {10{x^2} + {x^5} - 2} \right)}^6},円dx}}\) Solution
  2. \( \displaystyle \int_{0}^{{\frac{\pi }{4}}}{{\frac{{8\cos \left( {2t} \right)}}{{\sqrt {9 - 5\sin \left( {2t} \right)} }},円dt}}\) Solution
  3. \( \displaystyle \int_{\pi }^{0}{{\sin \left( z \right){{\cos }^3}\left( z \right),円dz}}\) Solution
  4. \( \displaystyle \int_{1}^{4}{{\sqrt w ,円{{\bf{e}}^{1 - \sqrt {{w^{,3円}}} }},円dw}}\) Solution
  5. \( \displaystyle \int_{{ - 4}}^{{ - 1}}{{\sqrt[3]{{5 - 2y}} + \frac{7}{{5 - 2y}},円dy}}\) Solution
  6. \( \displaystyle \int_{{ - 1}}^{2}{{{x^3} + {{\bf{e}}^{\frac{1}{4}x}},円dx}}\) Solution
  7. \( \displaystyle \int_{\pi }^{{\frac{{3\pi }}{2}}}{{6\sin \left( {2w} \right) - 7\cos \left( w \right)dw}}\) Solution
  8. \( \displaystyle \int_{1}^{5}{{\frac{{2{x^3} + x}}{{{x^4} + {x^2} + 1}} - \frac{x}{{{x^2} - 4}},円dx}}\) Solution
  9. \( \displaystyle \int_{{ - 2}}^{0}{{t\sqrt {3 + {t^2}} + \frac{3}{{{{\left( {6t - 1} \right)}^2}}},円dt}}\) Solution
  10. \( \displaystyle \int_{{ - 2}}^{1}{{{{\left( {2 - z} \right)}^3} + \sin \left( {\pi z} \right){{\left[ {3 + 2\cos \left( {\pi z} \right)} \right]}^3},円dz}}\) Solution
[Contact Me] [Privacy Statement] [Site Help & FAQ] [Terms of Use]
© 2003 - 2025 Paul Dawkins
Page Last Modified : 11/16/2022

AltStyle によって変換されたページ (->オリジナル) /