Paul's Online Notes
  • Go To
  • Notes
  • Practice and Assignment problems are not yet written. As time permits I am working on them, however I don't have the amount of free time that I used to so it will take a while before anything shows up here.
  • Show/Hide
Paul's Online Notes
Home / Differential Equations / Laplace Transforms / Table Of Laplace Transforms
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 4.10 : Table Of Laplace Transforms

Table of Laplace Transforms

\(f\left( t \right) = {\mathcal{L}^{,円,円 - 1}}\left\{ {F\left( s \right)} \right\}\) \(F\left( s \right) = \mathcal{L}\left\{ {f\left( t \right)} \right\}\)
1. 1 \(\displaystyle \frac{1}{s}\)
2. \({{\bf{e}}^{a,円t}}\) \(\displaystyle \frac{1}{{s - a}}\)
3. \({t^n},,円,円,円,円,円n = 1,2,3, \ldots \) \(\displaystyle \frac{{n!}}{{{s^{n + 1}}}}\)
4. \({t^p}\), \(p > -1\) \(\displaystyle \frac{{\Gamma \left( {p + 1} \right)}}{{{s^{p + 1}}}}\)
5. \(\sqrt t \) \(\displaystyle \frac{{\sqrt \pi }}{{2{s^{\frac{3}{2}}}}}\)
6. \({t^{n - \frac{1}{2}}},,円,円,円,円,円n = 1,2,3, \ldots \) \(\displaystyle \frac{{1 \cdot 3 \cdot 5 \cdots \left( {2n - 1} \right)\sqrt \pi }}{{{2^n}{s^{n + \frac{1}{2}}}}}\)
7. \(\sin \left( {at} \right)\) \(\displaystyle \frac{a}{{{s^2} + {a^2}}}\)
8. \(\cos \left( {at} \right)\) \(\displaystyle \frac{s}{{{s^2} + {a^2}}}\)
9. \(t\sin \left( {at} \right)\) \(\displaystyle \frac{{2as}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
10. \(t\cos \left( {at} \right)\) \(\displaystyle \frac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
11. \(\sin \left( {at} \right) - at\cos \left( {at} \right)\) \(\displaystyle \frac{{2{a^3}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
12. \(\sin \left( {at} \right) + at\cos \left( {at} \right)\) \(\displaystyle \frac{{2a{s^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
13. \(\cos \left( {at} \right) - at\sin \left( {at} \right)\) \(\displaystyle \frac{{s\left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
14. \(\cos \left( {at} \right) + at\sin \left( {at} \right)\) \(\displaystyle \frac{{s\left( {{s^2} + 3{a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
15. \(\sin \left( {at + b} \right)\) \(\displaystyle \frac{{s\sin \left( b \right) + a\cos \left( b \right)}}{{{s^2} + {a^2}}}\)
16. \(\cos \left( {at + b} \right)\) \(\displaystyle \frac{{s\cos \left( b \right) - a\sin \left( b \right)}}{{{s^2} + {a^2}}}\)
17. \(\sinh \left( {at} \right)\) \(\displaystyle \frac{a}{{{s^2} - {a^2}}}\)
18. \(\cosh \left( {at} \right)\) \(\displaystyle \frac{s}{{{s^2} - {a^2}}}\)
19. \({{\bf{e}}^{at}}\sin \left( {bt} \right)\) \(\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} + {b^2}}}\)
20. \({{\bf{e}}^{at}}\cos \left( {bt} \right)\) \(\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} + {b^2}}}\)
21. \({{\bf{e}}^{at}}\sinh \left( {bt} \right)\) \(\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} - {b^2}}}\)
22. \({{\bf{e}}^{at}}\cosh \left( {bt} \right)\) \(\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} - {b^2}}}\)
23. \({t^n}{{\bf{e}}^{at}},,円,円,円,円,円n = 1,2,3, \ldots \) \(\displaystyle \frac{{n!}}{{{{\left( {s - a} \right)}^{n + 1}}}}\)
24. \(f\left( {ct} \right)\) \(\displaystyle \frac{1}{c}F\left( {\frac{s}{c}} \right)\)
25. \({u_c}\left( t \right) = u\left( {t - c} \right)\)
Heaviside Function
\(\displaystyle \frac{{{{\bf{e}}^{ - cs}}}}{s}\)
26. \(\delta \left( {t - c} \right)\)
Dirac Delta Function
\({{\bf{e}}^{ - cs}}\)
27. \({u_c}\left( t \right)f\left( {t - c} \right)\) \({{\bf{e}}^{ - cs}}F\left( s \right)\)
28. \({u_c}\left( t \right)g\left( t \right)\) \({{\bf{e}}^{ - cs}}{\mathcal{L}}\left\{ {g\left( {t + c} \right)} \right\}\)
29. \({{\bf{e}}^{ct}}f\left( t \right)\) \(F\left( {s - c} \right)\)
30. \({t^n}f\left( t \right),,円,円,円,円,円n = 1,2,3, \ldots \) \({\left( { - 1} \right)^n}{F^{\left( n \right)}}\left( s \right)\)
31. \(\displaystyle \frac{1}{t}f\left( t \right)\) \(\int_{{,円s}}^{{,円\infty }}{{F\left( u \right),円du}}\)
32. \(\displaystyle \int_{{,0円}}^{{,円t}}{{,円f\left( v \right),円dv}}\) \(\displaystyle \frac{{F\left( s \right)}}{s}\)
33. \(\displaystyle \int_{{,0円}}^{{,円t}}{{f\left( {t - \tau } \right)g\left( \tau \right),円d\tau }}\) \(F\left( s \right)G\left( s \right)\)
34. \(f\left( {t + T} \right) = f\left( t \right)\) \(\displaystyle \frac{{\displaystyle \int_{{,0円}}^{{,円T}}{{{{\bf{e}}^{ - st}}f\left( t \right),円dt}}}}{{1 - {{\bf{e}}^{ - sT}}}}\)
35. \(f'\left( t \right)\) \(sF\left( s \right) - f\left( 0 \right)\)
36. \(f''\left( t \right)\) \({s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)\)
37. \({f^{\left( n \right)}}\left( t \right)\) \({s^n}F\left( s \right) - {s^{n - 1}}f\left( 0 \right) - {s^{n - 2}}f'\left( 0 \right) \cdots - s{f^{\left( {n - 2} \right)}}\left( 0 \right) - {f^{\left( {n - 1} \right)}}\left( 0 \right)\)

Table Notes

  1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.

  2. Recall the definition of hyperbolic functions. \[\cosh \left( t \right) = \frac{{{{\bf{e}}^t} + {{\bf{e}}^{ - t}}}}{2}\hspace{0.25in}\hspace{0.25in}\sinh \left( t \right) = \frac{{{{\bf{e}}^t} - {{\bf{e}}^{ - t}}}}{2}\]
  3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the "\(+ a^{2}\)" for the "normal" trig functions becomes a "\(- a^{2}\)" for the hyperbolic functions!

  4. Formula #4 uses the Gamma function which is defined as \[\Gamma \left( t \right) = \int_{{,0円}}^{{,円\infty }}{{{{\bf{e}}^{ - x}}{x^{t - 1}},円dx}}\]

    If \(n\) is a positive integer then,

    \[\Gamma \left( {n + 1} \right) = n!\]

    The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

    \[\begin{array}{c}\Gamma \left( {p + 1} \right) = p\Gamma \left( p \right)\\ p\left( {p + 1} \right)\left( {p + 2} \right) \cdots \left( {p + n - 1} \right) =\displaystyle \frac{{\Gamma \left( {p + n} \right)}}{{\Gamma \left( p \right)}}\\ \Gamma \left( {\displaystyle \frac{1}{2}} \right) = \sqrt \pi \end{array}\]
[Contact Me] [Privacy Statement] [Site Help & FAQ] [Terms of Use]
© 2003 - 2025 Paul Dawkins
Page Last Modified : 11/16/2022

AltStyle によって変換されたページ (->オリジナル) /