Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Integrals / Computing Indefinite Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5.2 : Computing Indefinite Integrals

For problems 1 – 21 evaluate the given integral.

  1. \(\displaystyle \int{{4{x^6} - 2{x^3} + 7x - 4,円dx}}\) Solution
  2. \(\displaystyle \int{{{z^7} - 48{z^{11}} - 5{z^{16}},円dz}}\) Solution
  3. \(\displaystyle \int{{10{t^{ - 3}} + 12{t^{ - 9}} + 4{t^3},円dt}}\) Solution
  4. \(\displaystyle \int{{{w^{ - 2}} + 10{w^{ - 5}} - 8,円dw}}\) Solution
  5. \(\displaystyle \int{{12,円dy}}\) Solution
  6. \(\displaystyle \int{{\sqrt[3]{w} + 10,円,円\sqrt[5]{{{w^3}}},円dw}}\) Solution
  7. \(\displaystyle \int{{\sqrt {{x^7}} - 7,円\sqrt[6]{{{x^5}}} + 17,円,円\sqrt[3]{{{x^{10}}}},円dx}}\) Solution
  8. \(\displaystyle \int{{\frac{4}{{{x^2}}} + 2 - \frac{1}{{8{x^3}}},円dx}}\) Solution
  9. \(\displaystyle \int{{\frac{7}{{3{y^6}}} + \frac{1}{{{y^{10}}}} - \frac{2}{{\sqrt[3]{{{y^4}}}}},円dy}}\) Solution
  10. \(\displaystyle \int{{\left( {{t^2} - 1} \right)\left( {4 + 3t} \right),円dt}}\) Solution
  11. \(\displaystyle \int{{\sqrt z \left( {{z^2} - \frac{1}{{4z}}} \right),円dz}}\) Solution
  12. \(\displaystyle \int{{\frac{{{z^8} - 6{z^5} + 4{z^3} - 2}}{{{z^4}}},円dz}}\) Solution
  13. \(\displaystyle \int{{\frac{{{x^4} - \sqrt[3]{x}}}{{6\sqrt x }},円dx}}\) Solution
  14. \(\displaystyle \int{{\sin \left( x \right) + 10{{\csc }^2}\left( x \right),円dx}}\) Solution
  15. \(\displaystyle \int{{2\cos \left( w \right) - \sec \left( w \right)\tan \left( w \right),円dw}}\) Solution
  16. \(\displaystyle \int{{12 + \csc \left( \theta \right)\left[ {\sin \left( \theta \right) + \csc \left( \theta \right)} \right],円d\theta }}\) Solution
  17. \(\displaystyle \int{{4{{\bf{e}}^z} + 15 - \frac{1}{{6z}},円dz}}\) Solution
  18. \(\displaystyle \int{{{t^3} - \frac{{{{\bf{e}}^{ - t}} - 4}}{{{{\bf{e}}^{ - t}}}},円dt}}\) Solution
  19. \(\displaystyle \int{{\frac{6}{{{w^3}}} - \frac{2}{w},円dw}}\) Solution
  20. \(\displaystyle \int{{\frac{1}{{1 + {x^2}}} + \frac{{12}}{{\sqrt {1 - {x^2}} }},円dx}}\) Solution
  21. \(\displaystyle \int{{6\cos \left( z \right) + \frac{4}{{\sqrt {1 - {z^2}} }},円dz}}\) Solution
  22. Determine \(f\left( x \right)\) given that \(f'\left( x \right) = 12{x^2} - 4x\) and \(f\left( { - 3} \right) = 17\). Solution
  23. Determine \(g\left( z \right)\) given that \(g'\left( z \right) = 3{z^3} + \frac{7}{{2\sqrt z }} - {{\bf{e}}^z}\) and \(g\left( 1 \right) = 15 - {\bf{e}}\). Solution
  24. Determine \(h\left( t \right)\) given that \(h''\left( t \right) = 24{t^2} - 48t + 2\), \(h\left( 1 \right) = - 9\) and \(h\left( { - 2} \right) = - 4\). Solution
[Contact Me] [Privacy Statement] [Site Help & FAQ] [Terms of Use]
© 2003 - 2025 Paul Dawkins
Page Last Modified : 11/16/2022

AltStyle によって変換されたページ (->オリジナル) /