Sublinear Algorithms

As the sizes of datasets grow to enormous proportions, there is a need for analyzing data with sublinear constraints -- that is, for the design of algorithms which require only sublinear time, space, measurements and/or samples. Our work has designed sublinear algorithms for estimating parameters of graphs, combinatorial objects, functions and distributions.

Faculty: Costis Daskalakis, Piotr Indyk, Mohsen Ghaffari, Ronitt Rubinfeld

Postdocs: Talya Eden

Students: Amartya Shankha Biswas, Justin Chen, Jane Lange, Shyam Narayanan,

Sandeep Silwal, Nicholas Schiefer, Arsen Vasilyan

Alumni:
PhD: Funda Ergun, S. Ravi Kumar, Tugkan Batu, Kevin Matulef, Krzysztof Onak, Arnab Bhattacharyya, Ning Xie, Reut Levi, Badih Ghazi, Themis Gouleakis, Anak Yodpinyanee, Pritish Kamath, John Peebles, Maryam Aliakbarpour
Postdocs: Shivani Agarwal, Eric Blais, Irit Dinur, Edlar Fischer, Tali Kaufman, Slobodan Mitrovic, Kobbi Nissim, Ning Xie
[引用],,:
Sampling Multiple Edges Efficiently.APPROX-RANDOM:51:1-51:15


,:
Monotone Probability Distributions over the Boolean Cube Can Be Learned with Sublinear Samples.ITCS:28:1-28:34


,,:
Local Access to Huge Random Objects Through Partial Sampling.ITCS:27:1-27:65


,,,:
Improved Local Computation Algorithm for Set Cover via Sparsification.SODA:2993-3011
[引用] [引用] [引用] [引用]

MIFODS workshop on Sublinear algorithms, local algorithms and robust statistics (June 2018)

AltStyle によって変換されたページ (->オリジナル) /